ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltpnfd Unicode version

Theorem ltpnfd 9850
Description: Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
ltpnfd.a  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
ltpnfd  |-  ( ph  ->  A  < +oo )

Proof of Theorem ltpnfd
StepHypRef Expression
1 ltpnfd.a . 2  |-  ( ph  ->  A  e.  RR )
2 ltpnf 9849 . 2  |-  ( A  e.  RR  ->  A  < +oo )
31, 2syl 14 1  |-  ( ph  ->  A  < +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   class class class wbr 4030   RRcr 7873   +oocpnf 8053    < clt 8056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-pnf 8058  df-xr 8060  df-ltxr 8061
This theorem is referenced by:  xnn0dcle  9871  xqltnle  10339  fprodge1  11785  pcadd  12481
  Copyright terms: Public domain W3C validator