ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ntr0 Unicode version

Theorem ntr0 12604
Description: The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
Assertion
Ref Expression
ntr0  |-  ( J  e.  Top  ->  (
( int `  J
) `  (/) )  =  (/) )

Proof of Theorem ntr0
StepHypRef Expression
1 0opn 12474 . 2  |-  ( J  e.  Top  ->  (/)  e.  J
)
2 0ss 3433 . . 3  |-  (/)  C_  U. J
3 eqid 2157 . . . 4  |-  U. J  =  U. J
43isopn3 12595 . . 3  |-  ( ( J  e.  Top  /\  (/)  C_  U. J )  -> 
( (/)  e.  J  <->  ( ( int `  J ) `  (/) )  =  (/) ) )
52, 4mpan2 422 . 2  |-  ( J  e.  Top  ->  ( (/) 
e.  J  <->  ( ( int `  J ) `  (/) )  =  (/) ) )
61, 5mpbid 146 1  |-  ( J  e.  Top  ->  (
( int `  J
) `  (/) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335    e. wcel 2128    C_ wss 3102   (/)c0 3395   U.cuni 3774   ` cfv 5172   Topctop 12465   intcnt 12563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-top 12466  df-ntr 12566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator