ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restrcl Unicode version

Theorem restrcl 14403
Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon, 23-Mar-2023.)
Assertion
Ref Expression
restrcl  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)

Proof of Theorem restrcl
Dummy variables  x  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0opn 14242 . 2  |-  ( ( Jt  A )  e.  Top  -> 
(/)  e.  ( Jt  A
) )
2 df-rest 12912 . . 3  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
32elmpocl 6118 . 2  |-  ( (/)  e.  ( Jt  A )  ->  ( J  e.  _V  /\  A  e.  _V ) )
41, 3syl 14 1  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   _Vcvv 2763    i^i cin 3156   (/)c0 3450    |-> cmpt 4094   ran crn 4664  (class class class)co 5922   ↾t crest 12910   Topctop 14233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-rest 12912  df-top 14234
This theorem is referenced by:  cnrest2r  14473
  Copyright terms: Public domain W3C validator