ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restrcl Unicode version

Theorem restrcl 12538
Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon, 23-Mar-2023.)
Assertion
Ref Expression
restrcl  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)

Proof of Theorem restrcl
Dummy variables  x  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0opn 12375 . 2  |-  ( ( Jt  A )  e.  Top  -> 
(/)  e.  ( Jt  A
) )
2 df-rest 12324 . . 3  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
32elmpocl 6015 . 2  |-  ( (/)  e.  ( Jt  A )  ->  ( J  e.  _V  /\  A  e.  _V ) )
41, 3syl 14 1  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2128   _Vcvv 2712    i^i cin 3101   (/)c0 3394    |-> cmpt 4025   ran crn 4586  (class class class)co 5821   ↾t crest 12322   Topctop 12366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-rest 12324  df-top 12367
This theorem is referenced by:  cnrest2r  12608
  Copyright terms: Public domain W3C validator