ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  restrcl Unicode version

Theorem restrcl 14335
Description: Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon, 23-Mar-2023.)
Assertion
Ref Expression
restrcl  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)

Proof of Theorem restrcl
Dummy variables  x  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0opn 14174 . 2  |-  ( ( Jt  A )  e.  Top  -> 
(/)  e.  ( Jt  A
) )
2 df-rest 12852 . . 3  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
32elmpocl 6113 . 2  |-  ( (/)  e.  ( Jt  A )  ->  ( J  e.  _V  /\  A  e.  _V ) )
41, 3syl 14 1  |-  ( ( Jt  A )  e.  Top  ->  ( J  e.  _V  /\  A  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760    i^i cin 3152   (/)c0 3446    |-> cmpt 4090   ran crn 4660  (class class class)co 5918   ↾t crest 12850   Topctop 14165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-rest 12852  df-top 14166
This theorem is referenced by:  cnrest2r  14405
  Copyright terms: Public domain W3C validator