| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsslnid | Unicode version | ||
| Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.) |
| Ref | Expression |
|---|---|
| setsslid.e |
|
| setsslnid.n |
|
| setsslnid.d |
|
| Ref | Expression |
|---|---|
| setsslnid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsslnid.d |
. . . . 5
| |
| 2 | setsresg 12955 |
. . . . 5
| |
| 3 | 1, 2 | mp3an2 1338 |
. . . 4
|
| 4 | 3 | fveq1d 5596 |
. . 3
|
| 5 | setsslid.e |
. . . . . . 7
| |
| 6 | 5 | simpri 113 |
. . . . . 6
|
| 7 | 6 | elexi 2786 |
. . . . 5
|
| 8 | setsslnid.n |
. . . . 5
| |
| 9 | eldifsn 3766 |
. . . . 5
| |
| 10 | 7, 8, 9 | mpbir2an 945 |
. . . 4
|
| 11 | fvres 5618 |
. . . 4
| |
| 12 | 10, 11 | ax-mp 5 |
. . 3
|
| 13 | fvres 5618 |
. . . 4
| |
| 14 | 10, 13 | ax-mp 5 |
. . 3
|
| 15 | 4, 12, 14 | 3eqtr3g 2262 |
. 2
|
| 16 | 5 | simpli 111 |
. . 3
|
| 17 | setsex 12949 |
. . . 4
| |
| 18 | 1, 17 | mp3an2 1338 |
. . 3
|
| 19 | 6 | a1i 9 |
. . 3
|
| 20 | 16, 18, 19 | strnfvnd 12937 |
. 2
|
| 21 | simpl 109 |
. . 3
| |
| 22 | 16, 21, 19 | strnfvnd 12937 |
. 2
|
| 23 | 15, 20, 22 | 3eqtr4rd 2250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-slot 12921 df-sets 12924 |
| This theorem is referenced by: resseqnbasd 12990 mgpbasg 13773 mgpscag 13774 mgptsetg 13775 mgpdsg 13777 opprsllem 13921 rmodislmod 14198 sralemg 14285 srascag 14289 sravscag 14290 zlmlemg 14475 zlmsca 14479 znbaslemnn 14486 setsmsbasg 15036 setsmsdsg 15037 |
| Copyright terms: Public domain | W3C validator |