ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslnid Unicode version

Theorem setsslnid 12467
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypotheses
Ref Expression
setsslid.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
setsslnid.n  |-  ( E `
 ndx )  =/= 
D
setsslnid.d  |-  D  e.  NN
Assertion
Ref Expression
setsslnid  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. D ,  C >. )
) )

Proof of Theorem setsslnid
StepHypRef Expression
1 setsslnid.d . . . . 5  |-  D  e.  NN
2 setsresg 12454 . . . . 5  |-  ( ( W  e.  A  /\  D  e.  NN  /\  C  e.  V )  ->  (
( W sSet  <. D ,  C >. )  |`  ( _V  \  { D }
) )  =  ( W  |`  ( _V  \  { D } ) ) )
31, 2mp3an2 1320 . . . 4  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( W sSet  <. D ,  C >. )  |`  ( _V  \  { D } ) )  =  ( W  |`  ( _V  \  { D }
) ) )
43fveq1d 5498 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W sSet  <. D ,  C >. )  |`  ( _V  \  { D } ) ) `  ( E `  ndx )
)  =  ( ( W  |`  ( _V  \  { D } ) ) `  ( E `
 ndx ) ) )
5 setsslid.e . . . . . . 7  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
65simpri 112 . . . . . 6  |-  ( E `
 ndx )  e.  NN
76elexi 2742 . . . . 5  |-  ( E `
 ndx )  e. 
_V
8 setsslnid.n . . . . 5  |-  ( E `
 ndx )  =/= 
D
9 eldifsn 3710 . . . . 5  |-  ( ( E `  ndx )  e.  ( _V  \  { D } )  <->  ( ( E `  ndx )  e. 
_V  /\  ( E `  ndx )  =/=  D
) )
107, 8, 9mpbir2an 937 . . . 4  |-  ( E `
 ndx )  e.  ( _V  \  { D } )
11 fvres 5520 . . . 4  |-  ( ( E `  ndx )  e.  ( _V  \  { D } )  ->  (
( ( W sSet  <. D ,  C >. )  |`  ( _V  \  { D } ) ) `  ( E `  ndx )
)  =  ( ( W sSet  <. D ,  C >. ) `  ( E `
 ndx ) ) )
1210, 11ax-mp 5 . . 3  |-  ( ( ( W sSet  <. D ,  C >. )  |`  ( _V  \  { D }
) ) `  ( E `  ndx ) )  =  ( ( W sSet  <. D ,  C >. ) `
 ( E `  ndx ) )
13 fvres 5520 . . . 4  |-  ( ( E `  ndx )  e.  ( _V  \  { D } )  ->  (
( W  |`  ( _V  \  { D }
) ) `  ( E `  ndx ) )  =  ( W `  ( E `  ndx )
) )
1410, 13ax-mp 5 . . 3  |-  ( ( W  |`  ( _V  \  { D } ) ) `  ( E `
 ndx ) )  =  ( W `  ( E `  ndx )
)
154, 12, 143eqtr3g 2226 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( W sSet  <. D ,  C >. ) `  ( E `  ndx ) )  =  ( W `  ( E `
 ndx ) ) )
165simpli 110 . . 3  |-  E  = Slot  ( E `  ndx )
17 setsex 12448 . . . 4  |-  ( ( W  e.  A  /\  D  e.  NN  /\  C  e.  V )  ->  ( W sSet  <. D ,  C >. )  e.  _V )
181, 17mp3an2 1320 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( W sSet  <. D ,  C >. )  e.  _V )
196a1i 9 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  ndx )  e.  NN )
2016, 18, 19strnfvnd 12436 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  ( W sSet  <. D ,  C >. ) )  =  ( ( W sSet  <. D ,  C >. ) `  ( E `  ndx ) ) )
21 simpl 108 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  W  e.  A )
2216, 21, 19strnfvnd 12436 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  W
)  =  ( W `
 ( E `  ndx ) ) )
2315, 20, 223eqtr4rd 2214 1  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. D ,  C >. )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141    =/= wne 2340   _Vcvv 2730    \ cdif 3118   {csn 3583   <.cop 3586    |` cres 4613   ` cfv 5198  (class class class)co 5853   NNcn 8878   ndxcnx 12413   sSet csts 12414  Slot cslot 12415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-slot 12420  df-sets 12423
This theorem is referenced by:  setsmsbasg  13273  setsmsdsg  13274
  Copyright terms: Public domain W3C validator