ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsslnid Unicode version

Theorem setsslnid 12730
Description: Value of the structure replacement function at an untouched index. (Contributed by Mario Carneiro, 1-Dec-2014.) (Revised by Jim Kingdon, 24-Jan-2023.)
Hypotheses
Ref Expression
setsslid.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
setsslnid.n  |-  ( E `
 ndx )  =/= 
D
setsslnid.d  |-  D  e.  NN
Assertion
Ref Expression
setsslnid  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. D ,  C >. )
) )

Proof of Theorem setsslnid
StepHypRef Expression
1 setsslnid.d . . . . 5  |-  D  e.  NN
2 setsresg 12716 . . . . 5  |-  ( ( W  e.  A  /\  D  e.  NN  /\  C  e.  V )  ->  (
( W sSet  <. D ,  C >. )  |`  ( _V  \  { D }
) )  =  ( W  |`  ( _V  \  { D } ) ) )
31, 2mp3an2 1336 . . . 4  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( W sSet  <. D ,  C >. )  |`  ( _V  \  { D } ) )  =  ( W  |`  ( _V  \  { D }
) ) )
43fveq1d 5560 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( ( W sSet  <. D ,  C >. )  |`  ( _V  \  { D } ) ) `  ( E `  ndx )
)  =  ( ( W  |`  ( _V  \  { D } ) ) `  ( E `
 ndx ) ) )
5 setsslid.e . . . . . . 7  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
65simpri 113 . . . . . 6  |-  ( E `
 ndx )  e.  NN
76elexi 2775 . . . . 5  |-  ( E `
 ndx )  e. 
_V
8 setsslnid.n . . . . 5  |-  ( E `
 ndx )  =/= 
D
9 eldifsn 3749 . . . . 5  |-  ( ( E `  ndx )  e.  ( _V  \  { D } )  <->  ( ( E `  ndx )  e. 
_V  /\  ( E `  ndx )  =/=  D
) )
107, 8, 9mpbir2an 944 . . . 4  |-  ( E `
 ndx )  e.  ( _V  \  { D } )
11 fvres 5582 . . . 4  |-  ( ( E `  ndx )  e.  ( _V  \  { D } )  ->  (
( ( W sSet  <. D ,  C >. )  |`  ( _V  \  { D } ) ) `  ( E `  ndx )
)  =  ( ( W sSet  <. D ,  C >. ) `  ( E `
 ndx ) ) )
1210, 11ax-mp 5 . . 3  |-  ( ( ( W sSet  <. D ,  C >. )  |`  ( _V  \  { D }
) ) `  ( E `  ndx ) )  =  ( ( W sSet  <. D ,  C >. ) `
 ( E `  ndx ) )
13 fvres 5582 . . . 4  |-  ( ( E `  ndx )  e.  ( _V  \  { D } )  ->  (
( W  |`  ( _V  \  { D }
) ) `  ( E `  ndx ) )  =  ( W `  ( E `  ndx )
) )
1410, 13ax-mp 5 . . 3  |-  ( ( W  |`  ( _V  \  { D } ) ) `  ( E `
 ndx ) )  =  ( W `  ( E `  ndx )
)
154, 12, 143eqtr3g 2252 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( ( W sSet  <. D ,  C >. ) `  ( E `  ndx ) )  =  ( W `  ( E `
 ndx ) ) )
165simpli 111 . . 3  |-  E  = Slot  ( E `  ndx )
17 setsex 12710 . . . 4  |-  ( ( W  e.  A  /\  D  e.  NN  /\  C  e.  V )  ->  ( W sSet  <. D ,  C >. )  e.  _V )
181, 17mp3an2 1336 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( W sSet  <. D ,  C >. )  e.  _V )
196a1i 9 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  ndx )  e.  NN )
2016, 18, 19strnfvnd 12698 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  ( W sSet  <. D ,  C >. ) )  =  ( ( W sSet  <. D ,  C >. ) `  ( E `  ndx ) ) )
21 simpl 109 . . 3  |-  ( ( W  e.  A  /\  C  e.  V )  ->  W  e.  A )
2216, 21, 19strnfvnd 12698 . 2  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  W
)  =  ( W `
 ( E `  ndx ) ) )
2315, 20, 223eqtr4rd 2240 1  |-  ( ( W  e.  A  /\  C  e.  V )  ->  ( E `  W
)  =  ( E `
 ( W sSet  <. D ,  C >. )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   _Vcvv 2763    \ cdif 3154   {csn 3622   <.cop 3625    |` cres 4665   ` cfv 5258  (class class class)co 5922   NNcn 8990   ndxcnx 12675   sSet csts 12676  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-slot 12682  df-sets 12685
This theorem is referenced by:  resseqnbasd  12751  mgpbasg  13482  mgpscag  13483  mgptsetg  13484  mgpdsg  13486  opprsllem  13630  rmodislmod  13907  sralemg  13994  srascag  13998  sravscag  13999  zlmlemg  14184  zlmsca  14188  znbaslemnn  14195  setsmsbasg  14715  setsmsdsg  14716
  Copyright terms: Public domain W3C validator