Proof of Theorem 4sqlem10
| Step | Hyp | Ref
| Expression |
| 1 | | 4sqlem5.3 |
. . . . . 6
   |
| 2 | 1 | adantr 276 |
. . . . 5
 
   |
| 3 | 2 | nnzd 9447 |
. . . 4
 
   |
| 4 | | zsqcl 10702 |
. . . 4
       |
| 5 | 3, 4 | syl 14 |
. . 3
 
       |
| 6 | | 4sqlem5.2 |
. . . . . 6
   |
| 7 | 6 | adantr 276 |
. . . . 5
 
   |
| 8 | 2 | nnred 9003 |
. . . . . . . . 9
 
   |
| 9 | 8 | rehalfcld 9238 |
. . . . . . . 8
 
     |
| 10 | 9 | recnd 8055 |
. . . . . . 7
 
     |
| 11 | 10 | negnegd 8328 |
. . . . . 6
 
         |
| 12 | | 4sqlem5.4 |
. . . . . . . . . . . . . . 15
           |
| 13 | 6, 1, 12 | 4sqlem5 12551 |
. . . . . . . . . . . . . 14
         |
| 14 | 13 | adantr 276 |
. . . . . . . . . . . . 13
 
         |
| 15 | 14 | simpld 112 |
. . . . . . . . . . . 12
 
   |
| 16 | 15 | zred 9448 |
. . . . . . . . . . 11
 
   |
| 17 | 6, 1, 12 | 4sqlem6 12552 |
. . . . . . . . . . . . 13
          |
| 18 | 17 | adantr 276 |
. . . . . . . . . . . 12
 
          |
| 19 | 18 | simprd 114 |
. . . . . . . . . . 11
 
     |
| 20 | 16, 19 | ltned 8140 |
. . . . . . . . . 10
 
     |
| 21 | 20 | neneqd 2388 |
. . . . . . . . 9
 
     |
| 22 | | 2cnd 9063 |
. . . . . . . . . . . . . . 15
 
   |
| 23 | 22 | sqvald 10762 |
. . . . . . . . . . . . . 14
 
         |
| 24 | 23 | oveq2d 5938 |
. . . . . . . . . . . . 13
 
                     |
| 25 | 2 | nncnd 9004 |
. . . . . . . . . . . . . 14
 
   |
| 26 | | 2ap0 9083 |
. . . . . . . . . . . . . . 15
#  |
| 27 | 26 | a1i 9 |
. . . . . . . . . . . . . 14
 
 #   |
| 28 | 25, 22, 27 | sqdivapd 10778 |
. . . . . . . . . . . . 13
 
                   |
| 29 | 25 | sqcld 10763 |
. . . . . . . . . . . . . 14
 
       |
| 30 | 29, 22, 22, 27, 27 | divdivap1d 8849 |
. . . . . . . . . . . . 13
 
                   |
| 31 | 24, 28, 30 | 3eqtr4d 2239 |
. . . . . . . . . . . 12
 
                 |
| 32 | 29 | halfcld 9236 |
. . . . . . . . . . . . . 14
 
         |
| 33 | 32 | halfcld 9236 |
. . . . . . . . . . . . 13
 
           |
| 34 | 15 | zcnd 9449 |
. . . . . . . . . . . . . 14
 
   |
| 35 | 34 | sqcld 10763 |
. . . . . . . . . . . . 13
 
       |
| 36 | | 4sqlem10.5 |
. . . . . . . . . . . . 13
 
                 |
| 37 | 33, 35, 36 | subeq0d 8345 |
. . . . . . . . . . . 12
 
               |
| 38 | 31, 37 | eqtr2d 2230 |
. . . . . . . . . . 11
 
             |
| 39 | | zq 9700 |
. . . . . . . . . . . . 13
   |
| 40 | 15, 39 | syl 14 |
. . . . . . . . . . . 12
 
   |
| 41 | | 2nn 9152 |
. . . . . . . . . . . . . 14
 |
| 42 | 41 | a1i 9 |
. . . . . . . . . . . . 13
 
   |
| 43 | | znq 9698 |
. . . . . . . . . . . . 13
 
     |
| 44 | 3, 42, 43 | syl2anc 411 |
. . . . . . . . . . . 12
 
     |
| 45 | | qsqeqor 10742 |
. . . . . . . . . . . 12
  
                       |
| 46 | 40, 44, 45 | syl2anc 411 |
. . . . . . . . . . 11
 
                
     |
| 47 | 38, 46 | mpbid 147 |
. . . . . . . . . 10
 
     
    |
| 48 | 47 | ord 725 |
. . . . . . . . 9
 
   
      |
| 49 | 21, 48 | mpd 13 |
. . . . . . . 8
 
      |
| 50 | 49, 15 | eqeltrrd 2274 |
. . . . . . 7
 
      |
| 51 | 50 | znegcld 9450 |
. . . . . 6
 
       |
| 52 | 11, 51 | eqeltrrd 2274 |
. . . . 5
 
     |
| 53 | 7, 52 | zaddcld 9452 |
. . . 4
 
       |
| 54 | | zsqcl 10702 |
. . . 4
               |
| 55 | 53, 54 | syl 14 |
. . 3
 
   
       |
| 56 | 53, 3 | zmulcld 9454 |
. . 3
 
   
     |
| 57 | | zq 9700 |
. . . . . . . . . 10
   |
| 58 | 7, 57 | syl 14 |
. . . . . . . . 9
 
   |
| 59 | | qaddcl 9709 |
. . . . . . . . 9
  
   
    |
| 60 | 58, 44, 59 | syl2anc 411 |
. . . . . . . 8
 
       |
| 61 | | nnq 9707 |
. . . . . . . . 9
   |
| 62 | 2, 61 | syl 14 |
. . . . . . . 8
 
   |
| 63 | 2 | nngt0d 9034 |
. . . . . . . 8
 
   |
| 64 | 60, 62, 63 | modqcld 10420 |
. . . . . . 7
 
   
     |
| 65 | | qcn 9708 |
. . . . . . 7
               |
| 66 | 64, 65 | syl 14 |
. . . . . 6
 
   
     |
| 67 | | 0cnd 8019 |
. . . . . 6
 
   |
| 68 | | df-neg 8200 |
. . . . . . 7
        |
| 69 | 49, 12, 68 | 3eqtr3g 2252 |
. . . . . 6
 
                 |
| 70 | 66, 67, 10, 69 | subcan2d 8379 |
. . . . 5
 
   
     |
| 71 | | dvdsval3 11956 |
. . . . . 6
  
     
     
      |
| 72 | 2, 53, 71 | syl2anc 411 |
. . . . 5
 
  
     
      |
| 73 | 70, 72 | mpbird 167 |
. . . 4
 
       |
| 74 | | dvdssq 12198 |
. . . . 5
  
     
                  |
| 75 | 3, 53, 74 | syl2anc 411 |
. . . 4
 
  
                  |
| 76 | 73, 75 | mpbid 147 |
. . 3
 
               |
| 77 | 25 | sqvald 10762 |
. . . 4
 
         |
| 78 | 2 | nnne0d 9035 |
. . . . . 6
 
   |
| 79 | | dvdsmulcr 11986 |
. . . . . 6
  
   
          
       |
| 80 | 3, 53, 3, 78, 79 | syl112anc 1253 |
. . . . 5
 
         
       |
| 81 | 73, 80 | mpbird 167 |
. . . 4
 
  
 
      |
| 82 | 77, 81 | eqbrtrd 4055 |
. . 3
 
             |
| 83 | 5, 55, 56, 76, 82 | dvds2subd 11992 |
. 2
 
                       |
| 84 | 53 | zcnd 9449 |
. . . . 5
 
       |
| 85 | 84 | sqvald 10762 |
. . . 4
 
   
           
     |
| 86 | 85 | oveq1d 5937 |
. . 3
 
                                     |
| 87 | 84, 84, 25 | subdid 8440 |
. . 3
 
   
                             |
| 88 | 25 | 2halvesd 9237 |
. . . . . . 7
 
         |
| 89 | 88 | oveq2d 5938 |
. . . . . 6
 
   
                 |
| 90 | 7 | zcnd 9449 |
. . . . . . 7
 
   |
| 91 | 90, 10, 10 | pnpcan2d 8375 |
. . . . . 6
 
   
               |
| 92 | 89, 91 | eqtr3d 2231 |
. . . . 5
 
   
         |
| 93 | 92 | oveq2d 5938 |
. . . 4
 
   
               
     |
| 94 | | subsq 10738 |
. . . . 5
  
                          |
| 95 | 90, 10, 94 | syl2anc 411 |
. . . 4
 
                   
     |
| 96 | 31 | oveq2d 5938 |
. . . 4
 
                             |
| 97 | 93, 95, 96 | 3eqtr2d 2235 |
. . 3
 
   
                         |
| 98 | 86, 87, 97 | 3eqtr2d 2235 |
. 2
 
                                 |
| 99 | 83, 98 | breqtrd 4059 |
1
 
                     |