ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem10 Unicode version

Theorem 4sqlem10 12556
Description: Lemma for 4sq 12579. (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sqlem10.5  |-  ( (
ph  /\  ps )  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( B ^ 2 ) )  =  0 )
Assertion
Ref Expression
4sqlem10  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.3 . . . . . 6  |-  ( ph  ->  M  e.  NN )
21adantr 276 . . . . 5  |-  ( (
ph  /\  ps )  ->  M  e.  NN )
32nnzd 9447 . . . 4  |-  ( (
ph  /\  ps )  ->  M  e.  ZZ )
4 zsqcl 10702 . . . 4  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
53, 4syl 14 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  e.  ZZ )
6 4sqlem5.2 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
76adantr 276 . . . . 5  |-  ( (
ph  /\  ps )  ->  A  e.  ZZ )
82nnred 9003 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  M  e.  RR )
98rehalfcld 9238 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  RR )
109recnd 8055 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  CC )
1110negnegd 8328 . . . . . 6  |-  ( (
ph  /\  ps )  -> 
-u -u ( M  / 
2 )  =  ( M  /  2 ) )
12 4sqlem5.4 . . . . . . . . . . . . . . 15  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
136, 1, 124sqlem5 12551 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
1413adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
1514simpld 112 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  B  e.  ZZ )
1615zred 9448 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  B  e.  RR )
176, 1, 124sqlem6 12552 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1817adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1918simprd 114 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  B  <  ( M  /  2 ) )
2016, 19ltned 8140 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  B  =/=  ( M  /  2 ) )
2120neneqd 2388 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  -.  B  =  ( M  /  2 ) )
22 2cnd 9063 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  2  e.  CC )
2322sqvald 10762 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( 2 ^ 2 )  =  ( 2  x.  2 ) )
2423oveq2d 5938 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( M ^
2 )  /  (
2 ^ 2 ) )  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
252nncnd 9004 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  M  e.  CC )
26 2ap0 9083 . . . . . . . . . . . . . . 15  |-  2 #  0
2726a1i 9 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  2 #  0 )
2825, 22, 27sqdivapd 10778 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( M ^ 2 )  /  ( 2 ^ 2 ) ) )
2925sqcld 10763 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  e.  CC )
3029, 22, 22, 27, 27divdivap1d 8849 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
3124, 28, 303eqtr4d 2239 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( ( M ^ 2 )  /  2 )  /  2 ) )
3229halfcld 9236 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( ( M ^
2 )  /  2
)  e.  CC )
3332halfcld 9236 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  CC )
3415zcnd 9449 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  B  e.  CC )
3534sqcld 10763 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  e.  CC )
36 4sqlem10.5 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( B ^ 2 ) )  =  0 )
3733, 35, 36subeq0d 8345 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( B ^ 2 ) )
3831, 37eqtr2d 2230 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  =  ( ( M  /  2 ) ^ 2 ) )
39 zq 9700 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  B  e.  QQ )
4015, 39syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  B  e.  QQ )
41 2nn 9152 . . . . . . . . . . . . . 14  |-  2  e.  NN
4241a1i 9 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  2  e.  NN )
43 znq 9698 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  2  e.  NN )  ->  ( M  /  2
)  e.  QQ )
443, 42, 43syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  QQ )
45 qsqeqor 10742 . . . . . . . . . . . 12  |-  ( ( B  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( ( B ^ 2 )  =  ( ( M  / 
2 ) ^ 2 )  <->  ( B  =  ( M  /  2
)  \/  B  = 
-u ( M  / 
2 ) ) ) )
4640, 44, 45syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( ( B ^
2 )  =  ( ( M  /  2
) ^ 2 )  <-> 
( B  =  ( M  /  2 )  \/  B  =  -u ( M  /  2
) ) ) )
4738, 46mpbid 147 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( B  =  ( M  /  2 )  \/  B  =  -u ( M  /  2
) ) )
4847ord 725 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( -.  B  =  ( M  /  2
)  ->  B  =  -u ( M  /  2
) ) )
4921, 48mpd 13 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  B  =  -u ( M  /  2 ) )
5049, 15eqeltrrd 2274 . . . . . . 7  |-  ( (
ph  /\  ps )  -> 
-u ( M  / 
2 )  e.  ZZ )
5150znegcld 9450 . . . . . 6  |-  ( (
ph  /\  ps )  -> 
-u -u ( M  / 
2 )  e.  ZZ )
5211, 51eqeltrrd 2274 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  ZZ )
537, 52zaddcld 9452 . . . 4  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  ZZ )
54 zsqcl 10702 . . . 4  |-  ( ( A  +  ( M  /  2 ) )  e.  ZZ  ->  (
( A  +  ( M  /  2 ) ) ^ 2 )  e.  ZZ )
5553, 54syl 14 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) ) ^ 2 )  e.  ZZ )
5653, 3zmulcld 9454 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  M
)  e.  ZZ )
57 zq 9700 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
587, 57syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  A  e.  QQ )
59 qaddcl 9709 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( A  +  ( M  /  2
) )  e.  QQ )
6058, 44, 59syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  QQ )
61 nnq 9707 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  QQ )
622, 61syl 14 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  M  e.  QQ )
632nngt0d 9034 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  0  <  M )
6460, 62, 63modqcld 10420 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  QQ )
65 qcn 9708 . . . . . . 7  |-  ( ( ( A  +  ( M  /  2 ) )  mod  M )  e.  QQ  ->  (
( A  +  ( M  /  2 ) )  mod  M )  e.  CC )
6664, 65syl 14 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  CC )
67 0cnd 8019 . . . . . 6  |-  ( (
ph  /\  ps )  ->  0  e.  CC )
68 df-neg 8200 . . . . . . 7  |-  -u ( M  /  2 )  =  ( 0  -  ( M  /  2 ) )
6949, 12, 683eqtr3g 2252 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  =  ( 0  -  ( M  /  2
) ) )
7066, 67, 10, 69subcan2d 8379 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  =  0 )
71 dvdsval3 11956 . . . . . 6  |-  ( ( M  e.  NN  /\  ( A  +  ( M  /  2 ) )  e.  ZZ )  -> 
( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( ( A  +  ( M  /  2
) )  mod  M
)  =  0 ) )
722, 53, 71syl2anc 411 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( ( A  +  ( M  /  2
) )  mod  M
)  =  0 ) )
7370, 72mpbird 167 . . . 4  |-  ( (
ph  /\  ps )  ->  M  ||  ( A  +  ( M  / 
2 ) ) )
74 dvdssq 12198 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( A  +  ( M  /  2 ) )  e.  ZZ )  -> 
( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) ) )
753, 53, 74syl2anc 411 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) ) )
7673, 75mpbid 147 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) )
7725sqvald 10762 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  =  ( M  x.  M ) )
782nnne0d 9035 . . . . . 6  |-  ( (
ph  /\  ps )  ->  M  =/=  0 )
79 dvdsmulcr 11986 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( A  +  ( M  /  2 ) )  e.  ZZ  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( ( M  x.  M )  ||  (
( A  +  ( M  /  2 ) )  x.  M )  <-> 
M  ||  ( A  +  ( M  / 
2 ) ) ) )
803, 53, 3, 78, 79syl112anc 1253 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( M  x.  M )  ||  (
( A  +  ( M  /  2 ) )  x.  M )  <-> 
M  ||  ( A  +  ( M  / 
2 ) ) ) )
8173, 80mpbird 167 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  x.  M
)  ||  ( ( A  +  ( M  /  2 ) )  x.  M ) )
8277, 81eqbrtrd 4055 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) )  x.  M ) )
835, 55, 56, 76, 82dvds2subd 11992 . 2  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( ( A  +  ( M  /  2 ) ) ^ 2 )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
8453zcnd 9449 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  CC )
8584sqvald 10762 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) ) ^ 2 )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  /  2
) ) ) )
8685oveq1d 5937 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) )  =  ( ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  / 
2 ) ) )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
8784, 84, 25subdid 8440 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  / 
2 ) ) )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
88252halvesd 9237 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 )  +  ( M  /  2 ) )  =  M )
8988oveq2d 5938 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  (
( M  /  2
)  +  ( M  /  2 ) ) )  =  ( ( A  +  ( M  /  2 ) )  -  M ) )
907zcnd 9449 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  A  e.  CC )
9190, 10, 10pnpcan2d 8375 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  (
( M  /  2
)  +  ( M  /  2 ) ) )  =  ( A  -  ( M  / 
2 ) ) )
9289, 91eqtr3d 2231 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  M
)  =  ( A  -  ( M  / 
2 ) ) )
9392oveq2d 5938 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  /  2
) ) ) )
94 subsq 10738 . . . . 5  |-  ( ( A  e.  CC  /\  ( M  /  2
)  e.  CC )  ->  ( ( A ^ 2 )  -  ( ( M  / 
2 ) ^ 2 ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  / 
2 ) ) ) )
9590, 10, 94syl2anc 411 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A ^
2 )  -  (
( M  /  2
) ^ 2 ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  /  2
) ) ) )
9631oveq2d 5938 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A ^
2 )  -  (
( M  /  2
) ^ 2 ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
9793, 95, 963eqtr2d 2235 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
9886, 87, 973eqtr2d 2235 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
9983, 98breqtrd 4059 1  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   -ucneg 8198   # cap 8608    / cdiv 8699   NNcn 8990   2c2 9041   ZZcz 9326   QQcq 9693    mod cmo 10414   ^cexp 10630    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121
This theorem is referenced by:  4sqlem16  12575
  Copyright terms: Public domain W3C validator