ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem10 Unicode version

Theorem 4sqlem10 12368
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sqlem10.5  |-  ( (
ph  /\  ps )  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( B ^ 2 ) )  =  0 )
Assertion
Ref Expression
4sqlem10  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.3 . . . . . 6  |-  ( ph  ->  M  e.  NN )
21adantr 276 . . . . 5  |-  ( (
ph  /\  ps )  ->  M  e.  NN )
32nnzd 9363 . . . 4  |-  ( (
ph  /\  ps )  ->  M  e.  ZZ )
4 zsqcl 10576 . . . 4  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
53, 4syl 14 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  e.  ZZ )
6 4sqlem5.2 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
76adantr 276 . . . . 5  |-  ( (
ph  /\  ps )  ->  A  e.  ZZ )
82nnred 8921 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  M  e.  RR )
98rehalfcld 9154 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  RR )
109recnd 7976 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  CC )
1110negnegd 8249 . . . . . 6  |-  ( (
ph  /\  ps )  -> 
-u -u ( M  / 
2 )  =  ( M  /  2 ) )
12 4sqlem5.4 . . . . . . . . . . . . . . 15  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
136, 1, 124sqlem5 12363 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
1413adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
1514simpld 112 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  B  e.  ZZ )
1615zred 9364 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  B  e.  RR )
176, 1, 124sqlem6 12364 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1817adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1918simprd 114 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  B  <  ( M  /  2 ) )
2016, 19ltned 8061 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  B  =/=  ( M  /  2 ) )
2120neneqd 2368 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  -.  B  =  ( M  /  2 ) )
22 2cnd 8981 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  2  e.  CC )
2322sqvald 10636 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( 2 ^ 2 )  =  ( 2  x.  2 ) )
2423oveq2d 5885 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( M ^
2 )  /  (
2 ^ 2 ) )  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
252nncnd 8922 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  M  e.  CC )
26 2ap0 9001 . . . . . . . . . . . . . . 15  |-  2 #  0
2726a1i 9 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  2 #  0 )
2825, 22, 27sqdivapd 10652 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( M ^ 2 )  /  ( 2 ^ 2 ) ) )
2925sqcld 10637 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  e.  CC )
3029, 22, 22, 27, 27divdivap1d 8768 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
3124, 28, 303eqtr4d 2220 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( ( M ^ 2 )  /  2 )  /  2 ) )
3229halfcld 9152 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( ( M ^
2 )  /  2
)  e.  CC )
3332halfcld 9152 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  CC )
3415zcnd 9365 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  B  e.  CC )
3534sqcld 10637 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  e.  CC )
36 4sqlem10.5 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( B ^ 2 ) )  =  0 )
3733, 35, 36subeq0d 8266 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( B ^ 2 ) )
3831, 37eqtr2d 2211 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  =  ( ( M  /  2 ) ^ 2 ) )
39 zq 9615 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  B  e.  QQ )
4015, 39syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  B  e.  QQ )
41 2nn 9069 . . . . . . . . . . . . . 14  |-  2  e.  NN
4241a1i 9 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  2  e.  NN )
43 znq 9613 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  2  e.  NN )  ->  ( M  /  2
)  e.  QQ )
443, 42, 43syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  QQ )
45 qsqeqor 10616 . . . . . . . . . . . 12  |-  ( ( B  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( ( B ^ 2 )  =  ( ( M  / 
2 ) ^ 2 )  <->  ( B  =  ( M  /  2
)  \/  B  = 
-u ( M  / 
2 ) ) ) )
4640, 44, 45syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( ( B ^
2 )  =  ( ( M  /  2
) ^ 2 )  <-> 
( B  =  ( M  /  2 )  \/  B  =  -u ( M  /  2
) ) ) )
4738, 46mpbid 147 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( B  =  ( M  /  2 )  \/  B  =  -u ( M  /  2
) ) )
4847ord 724 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( -.  B  =  ( M  /  2
)  ->  B  =  -u ( M  /  2
) ) )
4921, 48mpd 13 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  B  =  -u ( M  /  2 ) )
5049, 15eqeltrrd 2255 . . . . . . 7  |-  ( (
ph  /\  ps )  -> 
-u ( M  / 
2 )  e.  ZZ )
5150znegcld 9366 . . . . . 6  |-  ( (
ph  /\  ps )  -> 
-u -u ( M  / 
2 )  e.  ZZ )
5211, 51eqeltrrd 2255 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  ZZ )
537, 52zaddcld 9368 . . . 4  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  ZZ )
54 zsqcl 10576 . . . 4  |-  ( ( A  +  ( M  /  2 ) )  e.  ZZ  ->  (
( A  +  ( M  /  2 ) ) ^ 2 )  e.  ZZ )
5553, 54syl 14 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) ) ^ 2 )  e.  ZZ )
5653, 3zmulcld 9370 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  M
)  e.  ZZ )
57 zq 9615 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
587, 57syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  A  e.  QQ )
59 qaddcl 9624 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( A  +  ( M  /  2
) )  e.  QQ )
6058, 44, 59syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  QQ )
61 nnq 9622 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  QQ )
622, 61syl 14 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  M  e.  QQ )
632nngt0d 8952 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  0  <  M )
6460, 62, 63modqcld 10314 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  QQ )
65 qcn 9623 . . . . . . 7  |-  ( ( ( A  +  ( M  /  2 ) )  mod  M )  e.  QQ  ->  (
( A  +  ( M  /  2 ) )  mod  M )  e.  CC )
6664, 65syl 14 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  CC )
67 0cnd 7941 . . . . . 6  |-  ( (
ph  /\  ps )  ->  0  e.  CC )
68 df-neg 8121 . . . . . . 7  |-  -u ( M  /  2 )  =  ( 0  -  ( M  /  2 ) )
6949, 12, 683eqtr3g 2233 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  =  ( 0  -  ( M  /  2
) ) )
7066, 67, 10, 69subcan2d 8300 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  =  0 )
71 dvdsval3 11782 . . . . . 6  |-  ( ( M  e.  NN  /\  ( A  +  ( M  /  2 ) )  e.  ZZ )  -> 
( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( ( A  +  ( M  /  2
) )  mod  M
)  =  0 ) )
722, 53, 71syl2anc 411 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( ( A  +  ( M  /  2
) )  mod  M
)  =  0 ) )
7370, 72mpbird 167 . . . 4  |-  ( (
ph  /\  ps )  ->  M  ||  ( A  +  ( M  / 
2 ) ) )
74 dvdssq 12015 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( A  +  ( M  /  2 ) )  e.  ZZ )  -> 
( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) ) )
753, 53, 74syl2anc 411 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) ) )
7673, 75mpbid 147 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) )
7725sqvald 10636 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  =  ( M  x.  M ) )
782nnne0d 8953 . . . . . 6  |-  ( (
ph  /\  ps )  ->  M  =/=  0 )
79 dvdsmulcr 11812 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( A  +  ( M  /  2 ) )  e.  ZZ  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( ( M  x.  M )  ||  (
( A  +  ( M  /  2 ) )  x.  M )  <-> 
M  ||  ( A  +  ( M  / 
2 ) ) ) )
803, 53, 3, 78, 79syl112anc 1242 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( M  x.  M )  ||  (
( A  +  ( M  /  2 ) )  x.  M )  <-> 
M  ||  ( A  +  ( M  / 
2 ) ) ) )
8173, 80mpbird 167 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  x.  M
)  ||  ( ( A  +  ( M  /  2 ) )  x.  M ) )
8277, 81eqbrtrd 4022 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) )  x.  M ) )
835, 55, 56, 76, 82dvds2subd 11818 . 2  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( ( A  +  ( M  /  2 ) ) ^ 2 )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
8453zcnd 9365 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  CC )
8584sqvald 10636 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) ) ^ 2 )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  /  2
) ) ) )
8685oveq1d 5884 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) )  =  ( ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  / 
2 ) ) )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
8784, 84, 25subdid 8361 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  / 
2 ) ) )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
88252halvesd 9153 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 )  +  ( M  /  2 ) )  =  M )
8988oveq2d 5885 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  (
( M  /  2
)  +  ( M  /  2 ) ) )  =  ( ( A  +  ( M  /  2 ) )  -  M ) )
907zcnd 9365 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  A  e.  CC )
9190, 10, 10pnpcan2d 8296 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  (
( M  /  2
)  +  ( M  /  2 ) ) )  =  ( A  -  ( M  / 
2 ) ) )
9289, 91eqtr3d 2212 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  M
)  =  ( A  -  ( M  / 
2 ) ) )
9392oveq2d 5885 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  /  2
) ) ) )
94 subsq 10612 . . . . 5  |-  ( ( A  e.  CC  /\  ( M  /  2
)  e.  CC )  ->  ( ( A ^ 2 )  -  ( ( M  / 
2 ) ^ 2 ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  / 
2 ) ) ) )
9590, 10, 94syl2anc 411 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A ^
2 )  -  (
( M  /  2
) ^ 2 ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  /  2
) ) ) )
9631oveq2d 5885 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A ^
2 )  -  (
( M  /  2
) ^ 2 ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
9793, 95, 963eqtr2d 2216 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
9886, 87, 973eqtr2d 2216 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
9983, 98breqtrd 4026 1  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148    =/= wne 2347   class class class wbr 4000  (class class class)co 5869   CCcc 7800   0cc0 7802    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118   -ucneg 8119   # cap 8528    / cdiv 8618   NNcn 8908   2c2 8959   ZZcz 9242   QQcq 9608    mod cmo 10308   ^cexp 10505    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator