ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem10 Unicode version

Theorem 4sqlem10 12398
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 16-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2  |-  ( ph  ->  A  e.  ZZ )
4sqlem5.3  |-  ( ph  ->  M  e.  NN )
4sqlem5.4  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
4sqlem10.5  |-  ( (
ph  /\  ps )  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( B ^ 2 ) )  =  0 )
Assertion
Ref Expression
4sqlem10  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )

Proof of Theorem 4sqlem10
StepHypRef Expression
1 4sqlem5.3 . . . . . 6  |-  ( ph  ->  M  e.  NN )
21adantr 276 . . . . 5  |-  ( (
ph  /\  ps )  ->  M  e.  NN )
32nnzd 9387 . . . 4  |-  ( (
ph  /\  ps )  ->  M  e.  ZZ )
4 zsqcl 10604 . . . 4  |-  ( M  e.  ZZ  ->  ( M ^ 2 )  e.  ZZ )
53, 4syl 14 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  e.  ZZ )
6 4sqlem5.2 . . . . . 6  |-  ( ph  ->  A  e.  ZZ )
76adantr 276 . . . . 5  |-  ( (
ph  /\  ps )  ->  A  e.  ZZ )
82nnred 8945 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  M  e.  RR )
98rehalfcld 9178 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  RR )
109recnd 7999 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  CC )
1110negnegd 8272 . . . . . 6  |-  ( (
ph  /\  ps )  -> 
-u -u ( M  / 
2 )  =  ( M  /  2 ) )
12 4sqlem5.4 . . . . . . . . . . . . . . 15  |-  B  =  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
136, 1, 124sqlem5 12393 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
1413adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( B  e.  ZZ  /\  ( ( A  -  B )  /  M
)  e.  ZZ ) )
1514simpld 112 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  B  e.  ZZ )
1615zred 9388 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  B  e.  RR )
176, 1, 124sqlem6 12394 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1817adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( -u ( M  /  2 )  <_  B  /\  B  <  ( M  /  2 ) ) )
1918simprd 114 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  B  <  ( M  /  2 ) )
2016, 19ltned 8084 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  B  =/=  ( M  /  2 ) )
2120neneqd 2378 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  -.  B  =  ( M  /  2 ) )
22 2cnd 9005 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ps )  ->  2  e.  CC )
2322sqvald 10664 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( 2 ^ 2 )  =  ( 2  x.  2 ) )
2423oveq2d 5904 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( M ^
2 )  /  (
2 ^ 2 ) )  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
252nncnd 8946 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  M  e.  CC )
26 2ap0 9025 . . . . . . . . . . . . . . 15  |-  2 #  0
2726a1i 9 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  2 #  0 )
2825, 22, 27sqdivapd 10680 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( M ^ 2 )  /  ( 2 ^ 2 ) ) )
2925sqcld 10665 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  e.  CC )
3029, 22, 22, 27, 27divdivap1d 8792 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( ( M ^ 2 )  /  ( 2  x.  2 ) ) )
3124, 28, 303eqtr4d 2230 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 ) ^ 2 )  =  ( ( ( M ^ 2 )  /  2 )  /  2 ) )
3229halfcld 9176 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  ( ( M ^
2 )  /  2
)  e.  CC )
3332halfcld 9176 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  e.  CC )
3415zcnd 9389 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ps )  ->  B  e.  CC )
3534sqcld 10665 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  e.  CC )
36 4sqlem10.5 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  ( ( ( ( M ^ 2 )  /  2 )  / 
2 )  -  ( B ^ 2 ) )  =  0 )
3733, 35, 36subeq0d 8289 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( ( ( M ^ 2 )  / 
2 )  /  2
)  =  ( B ^ 2 ) )
3831, 37eqtr2d 2221 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( B ^ 2 )  =  ( ( M  /  2 ) ^ 2 ) )
39 zq 9639 . . . . . . . . . . . . 13  |-  ( B  e.  ZZ  ->  B  e.  QQ )
4015, 39syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  B  e.  QQ )
41 2nn 9093 . . . . . . . . . . . . . 14  |-  2  e.  NN
4241a1i 9 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ps )  ->  2  e.  NN )
43 znq 9637 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  2  e.  NN )  ->  ( M  /  2
)  e.  QQ )
443, 42, 43syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  QQ )
45 qsqeqor 10644 . . . . . . . . . . . 12  |-  ( ( B  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( ( B ^ 2 )  =  ( ( M  / 
2 ) ^ 2 )  <->  ( B  =  ( M  /  2
)  \/  B  = 
-u ( M  / 
2 ) ) ) )
4640, 44, 45syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  ps )  ->  ( ( B ^
2 )  =  ( ( M  /  2
) ^ 2 )  <-> 
( B  =  ( M  /  2 )  \/  B  =  -u ( M  /  2
) ) ) )
4738, 46mpbid 147 . . . . . . . . . 10  |-  ( (
ph  /\  ps )  ->  ( B  =  ( M  /  2 )  \/  B  =  -u ( M  /  2
) ) )
4847ord 725 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  ( -.  B  =  ( M  /  2
)  ->  B  =  -u ( M  /  2
) ) )
4921, 48mpd 13 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  B  =  -u ( M  /  2 ) )
5049, 15eqeltrrd 2265 . . . . . . 7  |-  ( (
ph  /\  ps )  -> 
-u ( M  / 
2 )  e.  ZZ )
5150znegcld 9390 . . . . . 6  |-  ( (
ph  /\  ps )  -> 
-u -u ( M  / 
2 )  e.  ZZ )
5211, 51eqeltrrd 2265 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( M  /  2
)  e.  ZZ )
537, 52zaddcld 9392 . . . 4  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  ZZ )
54 zsqcl 10604 . . . 4  |-  ( ( A  +  ( M  /  2 ) )  e.  ZZ  ->  (
( A  +  ( M  /  2 ) ) ^ 2 )  e.  ZZ )
5553, 54syl 14 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) ) ^ 2 )  e.  ZZ )
5653, 3zmulcld 9394 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  M
)  e.  ZZ )
57 zq 9639 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  QQ )
587, 57syl 14 . . . . . . . . 9  |-  ( (
ph  /\  ps )  ->  A  e.  QQ )
59 qaddcl 9648 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  ( M  /  2
)  e.  QQ )  ->  ( A  +  ( M  /  2
) )  e.  QQ )
6058, 44, 59syl2anc 411 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  QQ )
61 nnq 9646 . . . . . . . . 9  |-  ( M  e.  NN  ->  M  e.  QQ )
622, 61syl 14 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  M  e.  QQ )
632nngt0d 8976 . . . . . . . 8  |-  ( (
ph  /\  ps )  ->  0  <  M )
6460, 62, 63modqcld 10341 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  QQ )
65 qcn 9647 . . . . . . 7  |-  ( ( ( A  +  ( M  /  2 ) )  mod  M )  e.  QQ  ->  (
( A  +  ( M  /  2 ) )  mod  M )  e.  CC )
6664, 65syl 14 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  e.  CC )
67 0cnd 7963 . . . . . 6  |-  ( (
ph  /\  ps )  ->  0  e.  CC )
68 df-neg 8144 . . . . . . 7  |-  -u ( M  /  2 )  =  ( 0  -  ( M  /  2 ) )
6949, 12, 683eqtr3g 2243 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  =  ( 0  -  ( M  /  2
) ) )
7066, 67, 10, 69subcan2d 8323 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  mod  M
)  =  0 )
71 dvdsval3 11811 . . . . . 6  |-  ( ( M  e.  NN  /\  ( A  +  ( M  /  2 ) )  e.  ZZ )  -> 
( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( ( A  +  ( M  /  2
) )  mod  M
)  =  0 ) )
722, 53, 71syl2anc 411 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( ( A  +  ( M  /  2
) )  mod  M
)  =  0 ) )
7370, 72mpbird 167 . . . 4  |-  ( (
ph  /\  ps )  ->  M  ||  ( A  +  ( M  / 
2 ) ) )
74 dvdssq 12045 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( A  +  ( M  /  2 ) )  e.  ZZ )  -> 
( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) ) )
753, 53, 74syl2anc 411 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  ||  ( A  +  ( M  /  2 ) )  <-> 
( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) ) )
7673, 75mpbid 147 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) ) ^ 2 ) )
7725sqvald 10664 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  =  ( M  x.  M ) )
782nnne0d 8977 . . . . . 6  |-  ( (
ph  /\  ps )  ->  M  =/=  0 )
79 dvdsmulcr 11841 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( A  +  ( M  /  2 ) )  e.  ZZ  /\  ( M  e.  ZZ  /\  M  =/=  0 ) )  -> 
( ( M  x.  M )  ||  (
( A  +  ( M  /  2 ) )  x.  M )  <-> 
M  ||  ( A  +  ( M  / 
2 ) ) ) )
803, 53, 3, 78, 79syl112anc 1252 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( M  x.  M )  ||  (
( A  +  ( M  /  2 ) )  x.  M )  <-> 
M  ||  ( A  +  ( M  / 
2 ) ) ) )
8173, 80mpbird 167 . . . 4  |-  ( (
ph  /\  ps )  ->  ( M  x.  M
)  ||  ( ( A  +  ( M  /  2 ) )  x.  M ) )
8277, 81eqbrtrd 4037 . . 3  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A  +  ( M  /  2 ) )  x.  M ) )
835, 55, 56, 76, 82dvds2subd 11847 . 2  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( ( A  +  ( M  /  2 ) ) ^ 2 )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
8453zcnd 9389 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( A  +  ( M  /  2 ) )  e.  CC )
8584sqvald 10664 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) ) ^ 2 )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  /  2
) ) ) )
8685oveq1d 5903 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) )  =  ( ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  / 
2 ) ) )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
8784, 84, 25subdid 8384 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( ( A  +  ( M  /  2 ) )  x.  ( A  +  ( M  / 
2 ) ) )  -  ( ( A  +  ( M  / 
2 ) )  x.  M ) ) )
88252halvesd 9177 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  ( ( M  / 
2 )  +  ( M  /  2 ) )  =  M )
8988oveq2d 5904 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  (
( M  /  2
)  +  ( M  /  2 ) ) )  =  ( ( A  +  ( M  /  2 ) )  -  M ) )
907zcnd 9389 . . . . . . 7  |-  ( (
ph  /\  ps )  ->  A  e.  CC )
9190, 10, 10pnpcan2d 8319 . . . . . 6  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  (
( M  /  2
)  +  ( M  /  2 ) ) )  =  ( A  -  ( M  / 
2 ) ) )
9289, 91eqtr3d 2222 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  -  M
)  =  ( A  -  ( M  / 
2 ) ) )
9392oveq2d 5904 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  /  2
) ) ) )
94 subsq 10640 . . . . 5  |-  ( ( A  e.  CC  /\  ( M  /  2
)  e.  CC )  ->  ( ( A ^ 2 )  -  ( ( M  / 
2 ) ^ 2 ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  / 
2 ) ) ) )
9590, 10, 94syl2anc 411 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A ^
2 )  -  (
( M  /  2
) ^ 2 ) )  =  ( ( A  +  ( M  /  2 ) )  x.  ( A  -  ( M  /  2
) ) ) )
9631oveq2d 5904 . . . 4  |-  ( (
ph  /\  ps )  ->  ( ( A ^
2 )  -  (
( M  /  2
) ^ 2 ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
9793, 95, 963eqtr2d 2226 . . 3  |-  ( (
ph  /\  ps )  ->  ( ( A  +  ( M  /  2
) )  x.  (
( A  +  ( M  /  2 ) )  -  M ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
9886, 87, 973eqtr2d 2226 . 2  |-  ( (
ph  /\  ps )  ->  ( ( ( A  +  ( M  / 
2 ) ) ^
2 )  -  (
( A  +  ( M  /  2 ) )  x.  M ) )  =  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
9983, 98breqtrd 4041 1  |-  ( (
ph  /\  ps )  ->  ( M ^ 2 )  ||  ( ( A ^ 2 )  -  ( ( ( M ^ 2 )  /  2 )  / 
2 ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1363    e. wcel 2158    =/= wne 2357   class class class wbr 4015  (class class class)co 5888   CCcc 7822   0cc0 7824    + caddc 7827    x. cmul 7829    < clt 8005    <_ cle 8006    - cmin 8141   -ucneg 8142   # cap 8551    / cdiv 8642   NNcn 8932   2c2 8983   ZZcz 9266   QQcq 9632    mod cmo 10335   ^cexp 10532    || cdvds 11807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942  ax-arch 7943  ax-caucvg 7944
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-sup 6996  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-2 8991  df-3 8992  df-4 8993  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-fzo 10156  df-fl 10283  df-mod 10336  df-seqfrec 10459  df-exp 10533  df-cj 10864  df-re 10865  df-im 10866  df-rsqrt 11020  df-abs 11021  df-dvds 11808  df-gcd 11957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator