ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cores2 Unicode version

Theorem cores2 5195
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
cores2  |-  ( dom 
A  C_  C  ->  ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  B ) )

Proof of Theorem cores2
StepHypRef Expression
1 dfdm4 4870 . . . . . 6  |-  dom  A  =  ran  `' A
21sseq1i 3219 . . . . 5  |-  ( dom 
A  C_  C  <->  ran  `' A  C_  C )
3 cores 5186 . . . . 5  |-  ( ran  `' A  C_  C  -> 
( ( `' B  |`  C )  o.  `' A )  =  ( `' B  o.  `' A ) )
42, 3sylbi 121 . . . 4  |-  ( dom 
A  C_  C  ->  ( ( `' B  |`  C )  o.  `' A )  =  ( `' B  o.  `' A ) )
5 cnvco 4863 . . . . 5  |-  `' ( A  o.  `' ( `' B  |`  C ) )  =  ( `' `' ( `' B  |`  C )  o.  `' A )
6 cocnvcnv1 5193 . . . . 5  |-  ( `' `' ( `' B  |`  C )  o.  `' A )  =  ( ( `' B  |`  C )  o.  `' A )
75, 6eqtri 2226 . . . 4  |-  `' ( A  o.  `' ( `' B  |`  C ) )  =  ( ( `' B  |`  C )  o.  `' A )
8 cnvco 4863 . . . 4  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
94, 7, 83eqtr4g 2263 . . 3  |-  ( dom 
A  C_  C  ->  `' ( A  o.  `' ( `' B  |`  C ) )  =  `' ( A  o.  B ) )
109cnveqd 4854 . 2  |-  ( dom 
A  C_  C  ->  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  `' `' ( A  o.  B ) )
11 relco 5181 . . 3  |-  Rel  ( A  o.  `' ( `' B  |`  C ) )
12 dfrel2 5133 . . 3  |-  ( Rel  ( A  o.  `' ( `' B  |`  C ) )  <->  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  `' ( `' B  |`  C ) ) )
1311, 12mpbi 145 . 2  |-  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  `' ( `' B  |`  C )
)
14 relco 5181 . . 3  |-  Rel  ( A  o.  B )
15 dfrel2 5133 . . 3  |-  ( Rel  ( A  o.  B
)  <->  `' `' ( A  o.  B )  =  ( A  o.  B ) )
1614, 15mpbi 145 . 2  |-  `' `' ( A  o.  B
)  =  ( A  o.  B )
1710, 13, 163eqtr3g 2261 1  |-  ( dom 
A  C_  C  ->  ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3166   `'ccnv 4674   dom cdm 4675   ran crn 4676    |` cres 4677    o. ccom 4679   Rel wrel 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687
This theorem is referenced by:  cocnvres  5207  fcoi1  5456
  Copyright terms: Public domain W3C validator