ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cores2 Unicode version

Theorem cores2 5240
Description: Absorption of a reverse (preimage) restriction of the second member of a class composition. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
cores2  |-  ( dom 
A  C_  C  ->  ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  B ) )

Proof of Theorem cores2
StepHypRef Expression
1 dfdm4 4914 . . . . . 6  |-  dom  A  =  ran  `' A
21sseq1i 3250 . . . . 5  |-  ( dom 
A  C_  C  <->  ran  `' A  C_  C )
3 cores 5231 . . . . 5  |-  ( ran  `' A  C_  C  -> 
( ( `' B  |`  C )  o.  `' A )  =  ( `' B  o.  `' A ) )
42, 3sylbi 121 . . . 4  |-  ( dom 
A  C_  C  ->  ( ( `' B  |`  C )  o.  `' A )  =  ( `' B  o.  `' A ) )
5 cnvco 4906 . . . . 5  |-  `' ( A  o.  `' ( `' B  |`  C ) )  =  ( `' `' ( `' B  |`  C )  o.  `' A )
6 cocnvcnv1 5238 . . . . 5  |-  ( `' `' ( `' B  |`  C )  o.  `' A )  =  ( ( `' B  |`  C )  o.  `' A )
75, 6eqtri 2250 . . . 4  |-  `' ( A  o.  `' ( `' B  |`  C ) )  =  ( ( `' B  |`  C )  o.  `' A )
8 cnvco 4906 . . . 4  |-  `' ( A  o.  B )  =  ( `' B  o.  `' A )
94, 7, 83eqtr4g 2287 . . 3  |-  ( dom 
A  C_  C  ->  `' ( A  o.  `' ( `' B  |`  C ) )  =  `' ( A  o.  B ) )
109cnveqd 4897 . 2  |-  ( dom 
A  C_  C  ->  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  `' `' ( A  o.  B ) )
11 relco 5226 . . 3  |-  Rel  ( A  o.  `' ( `' B  |`  C ) )
12 dfrel2 5178 . . 3  |-  ( Rel  ( A  o.  `' ( `' B  |`  C ) )  <->  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  `' ( `' B  |`  C ) ) )
1311, 12mpbi 145 . 2  |-  `' `' ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  `' ( `' B  |`  C )
)
14 relco 5226 . . 3  |-  Rel  ( A  o.  B )
15 dfrel2 5178 . . 3  |-  ( Rel  ( A  o.  B
)  <->  `' `' ( A  o.  B )  =  ( A  o.  B ) )
1614, 15mpbi 145 . 2  |-  `' `' ( A  o.  B
)  =  ( A  o.  B )
1710, 13, 163eqtr3g 2285 1  |-  ( dom 
A  C_  C  ->  ( A  o.  `' ( `' B  |`  C ) )  =  ( A  o.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197   `'ccnv 4717   dom cdm 4718   ran crn 4719    |` cres 4720    o. ccom 4722   Rel wrel 4723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730
This theorem is referenced by:  cocnvres  5252  fcoi1  5505
  Copyright terms: Public domain W3C validator