| Step | Hyp | Ref
| Expression |
| 1 | | nninffeq.f |
. . 3
  ℕ∞   |
| 2 | 1 | ffnd 5411 |
. 2

ℕ∞ |
| 3 | | nninffeq.g |
. . 3
  ℕ∞   |
| 4 | 3 | ffnd 5411 |
. 2

ℕ∞ |
| 5 | | eqid 2196 |
. . . . . . . 8
 ℕ∞               
ℕ∞                |
| 6 | | fveq2 5561 |
. . . . . . . . . 10
           |
| 7 | | fveq2 5561 |
. . . . . . . . . 10
           |
| 8 | 6, 7 | eqeq12d 2211 |
. . . . . . . . 9
         
           |
| 9 | 8 | ifbid 3583 |
. . . . . . . 8
             
               |
| 10 | | simpr 110 |
. . . . . . . 8
 
ℕ∞
ℕ∞ |
| 11 | | 1onn 6587 |
. . . . . . . . . 10
 |
| 12 | 11 | a1i 9 |
. . . . . . . . 9
 
ℕ∞   |
| 13 | | peano1 4631 |
. . . . . . . . . 10
 |
| 14 | 13 | a1i 9 |
. . . . . . . . 9
 
ℕ∞   |
| 15 | 1 | ffvelcdmda 5700 |
. . . . . . . . . . 11
 
ℕ∞       |
| 16 | 15 | nn0zd 9463 |
. . . . . . . . . 10
 
ℕ∞       |
| 17 | 3 | ffvelcdmda 5700 |
. . . . . . . . . . 11
 
ℕ∞       |
| 18 | 17 | nn0zd 9463 |
. . . . . . . . . 10
 
ℕ∞       |
| 19 | | zdceq 9418 |
. . . . . . . . . 10
           DECID           |
| 20 | 16, 18, 19 | syl2anc 411 |
. . . . . . . . 9
 
ℕ∞ DECID           |
| 21 | 12, 14, 20 | ifcldcd 3598 |
. . . . . . . 8
 
ℕ∞             
  |
| 22 | 5, 9, 10, 21 | fvmptd3 5658 |
. . . . . . 7
 
ℕ∞   ℕ∞                                 |
| 23 | | 1lt2o 6509 |
. . . . . . . . . . . . 13
 |
| 24 | 23 | a1i 9 |
. . . . . . . . . . . 12
 
ℕ∞   |
| 25 | | 0lt2o 6508 |
. . . . . . . . . . . . 13
 |
| 26 | 25 | a1i 9 |
. . . . . . . . . . . 12
 
ℕ∞   |
| 27 | 1 | ffvelcdmda 5700 |
. . . . . . . . . . . . . 14
 
ℕ∞       |
| 28 | 27 | nn0zd 9463 |
. . . . . . . . . . . . 13
 
ℕ∞       |
| 29 | 3 | ffvelcdmda 5700 |
. . . . . . . . . . . . . 14
 
ℕ∞       |
| 30 | 29 | nn0zd 9463 |
. . . . . . . . . . . . 13
 
ℕ∞       |
| 31 | | zdceq 9418 |
. . . . . . . . . . . . 13
           DECID           |
| 32 | 28, 30, 31 | syl2anc 411 |
. . . . . . . . . . . 12
 
ℕ∞ DECID           |
| 33 | 24, 26, 32 | ifcldcd 3598 |
. . . . . . . . . . 11
 
ℕ∞             
  |
| 34 | 33 | fmpttd 5720 |
. . . . . . . . . 10
 
ℕ∞                ℕ∞   |
| 35 | | 2onn 6588 |
. . . . . . . . . . . 12
 |
| 36 | 35 | elexi 2775 |
. . . . . . . . . . 11
 |
| 37 | | nninfex 7196 |
. . . . . . . . . . 11
ℕ∞  |
| 38 | 36, 37 | elmap 6745 |
. . . . . . . . . 10
 
ℕ∞               
ℕ∞  ℕ∞                ℕ∞   |
| 39 | 34, 38 | sylibr 134 |
. . . . . . . . 9
 
ℕ∞               
ℕ∞  |
| 40 | | fveq2 5561 |
. . . . . . . . . . . . 13
               |
| 41 | | fveq2 5561 |
. . . . . . . . . . . . 13
               |
| 42 | 40, 41 | eqeq12d 2211 |
. . . . . . . . . . . 12
                           |
| 43 | 42 | ifbid 3583 |
. . . . . . . . . . 11
               
                   |
| 44 | | infnninf 7199 |
. . . . . . . . . . . 12
  ℕ∞ |
| 45 | 44 | a1i 9 |
. . . . . . . . . . 11
  
ℕ∞ |
| 46 | | nninffeq.oo |
. . . . . . . . . . . . . 14
               |
| 47 | | eqidd 2197 |
. . . . . . . . . . . . . . . 16
   |
| 48 | 47 | cbvmptv 4130 |
. . . . . . . . . . . . . . 15
     |
| 49 | 48 | fveq2i 5564 |
. . . . . . . . . . . . . 14
         
   |
| 50 | 48 | fveq2i 5564 |
. . . . . . . . . . . . . 14
         
   |
| 51 | 46, 49, 50 | 3eqtr3g 2252 |
. . . . . . . . . . . . 13
               |
| 52 | 51 | iftrued 3569 |
. . . . . . . . . . . 12
            
       |
| 53 | 52, 11 | eqeltrdi 2287 |
. . . . . . . . . . 11
            
       |
| 54 | 5, 43, 45, 53 | fvmptd3 5658 |
. . . . . . . . . 10
   ℕ∞                                       |
| 55 | 54, 52 | eqtrd 2229 |
. . . . . . . . 9
   ℕ∞                      |
| 56 | | nninffeq.n |
. . . . . . . . . 10
                          |
| 57 | | fveq2 5561 |
. . . . . . . . . . . . . . . 16
                         |
| 58 | | fveq2 5561 |
. . . . . . . . . . . . . . . 16
                         |
| 59 | 57, 58 | eqeq12d 2211 |
. . . . . . . . . . . . . . 15
                                          |
| 60 | 59 | ifbid 3583 |
. . . . . . . . . . . . . 14
                    
                             |
| 61 | | nnnninf 7201 |
. . . . . . . . . . . . . . 15
        ℕ∞ |
| 62 | 61 | ad2antlr 489 |
. . . . . . . . . . . . . 14
                                  ℕ∞ |
| 63 | | simpr 110 |
. . . . . . . . . . . . . . . 16
                                                   |
| 64 | 63 | iftrued 3569 |
. . . . . . . . . . . . . . 15
                                                     
  |
| 65 | 64, 11 | eqeltrdi 2287 |
. . . . . . . . . . . . . 14
                                                     
  |
| 66 | 5, 60, 62, 65 | fvmptd3 5658 |
. . . . . . . . . . . . 13
                            
ℕ∞                                                      |
| 67 | 66, 64 | eqtrd 2229 |
. . . . . . . . . . . 12
                            
ℕ∞                           |
| 68 | 67 | ex 115 |
. . . . . . . . . . 11
 

                      
 
ℕ∞                            |
| 69 | 68 | ralimdva 2564 |
. . . . . . . . . 10
                            ℕ∞                            |
| 70 | 56, 69 | mpd 13 |
. . . . . . . . 9
    ℕ∞                           |
| 71 | 39, 55, 70 | nninfall 15740 |
. . . . . . . 8
 
ℕ∞   ℕ∞                    |
| 72 | 71 | r19.21bi 2585 |
. . . . . . 7
 
ℕ∞   ℕ∞                    |
| 73 | 22, 72 | eqtr3d 2231 |
. . . . . 6
 
ℕ∞             
  |
| 74 | 73 | adantr 276 |
. . . . 5
   ℕ∞                      
  |
| 75 | | simpr 110 |
. . . . . 6
   ℕ∞                    |
| 76 | 75 | iffalsed 3572 |
. . . . 5
   ℕ∞                      
  |
| 77 | 74, 76 | eqtr3d 2231 |
. . . 4
   ℕ∞            |
| 78 | | 1n0 6499 |
. . . . . 6
 |
| 79 | 78 | neii 2369 |
. . . . 5
 |
| 80 | 79 | a1i 9 |
. . . 4
   ℕ∞         
  |
| 81 | 77, 80 | pm2.65da 662 |
. . 3
 
ℕ∞           |
| 82 | | exmiddc 837 |
. . . 4
DECID        
                    |
| 83 | 20, 82 | syl 14 |
. . 3
 
ℕ∞                     |
| 84 | 81, 83 | ecased 1360 |
. 2
 
ℕ∞           |
| 85 | 2, 4, 84 | eqfnfvd 5665 |
1
   |