Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninffeq Unicode version

Theorem nninffeq 15751
Description: Equality of two functions on ℕ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one,  |-  ( ph  ->  A. n  e.  suc  om
... ). (Contributed by Jim Kingdon, 4-Aug-2023.)
Hypotheses
Ref Expression
nninffeq.f  |-  ( ph  ->  F : --> NN0 )
nninffeq.g  |-  ( ph  ->  G : --> NN0 )
nninffeq.oo  |-  ( ph  ->  ( F `  (
x  e.  om  |->  1o ) )  =  ( G `  ( x  e.  om  |->  1o ) ) )
nninffeq.n  |-  ( ph  ->  A. n  e.  om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
Assertion
Ref Expression
nninffeq  |-  ( ph  ->  F  =  G )
Distinct variable groups:    i, F, n, x    i, G, n, x    ph, i, n, x

Proof of Theorem nninffeq
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninffeq.f . . 3  |-  ( ph  ->  F : --> NN0 )
21ffnd 5411 . 2  |-  ( ph  ->  F  Fn )
3 nninffeq.g . . 3  |-  ( ph  ->  G : --> NN0 )
43ffnd 5411 . 2  |-  ( ph  ->  G  Fn )
5 eqid 2196 . . . . . . . 8  |-  ( x  e.  |->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )  =  ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )
6 fveq2 5561 . . . . . . . . . 10  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
7 fveq2 5561 . . . . . . . . . 10  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
86, 7eqeq12d 2211 . . . . . . . . 9  |-  ( x  =  z  ->  (
( F `  x
)  =  ( G `
 x )  <->  ( F `  z )  =  ( G `  z ) ) )
98ifbid 3583 . . . . . . . 8  |-  ( x  =  z  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  =  if (
( F `  z
)  =  ( G `
 z ) ,  1o ,  (/) ) )
10 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  z  e. )  -> 
z  e. )
11 1onn 6587 . . . . . . . . . 10  |-  1o  e.  om
1211a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  z  e. )  ->  1o  e.  om )
13 peano1 4631 . . . . . . . . . 10  |-  (/)  e.  om
1413a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  z  e. )  ->  (/) 
e.  om )
151ffvelcdmda 5700 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e. )  -> 
( F `  z
)  e.  NN0 )
1615nn0zd 9463 . . . . . . . . . 10  |-  ( (
ph  /\  z  e. )  -> 
( F `  z
)  e.  ZZ )
173ffvelcdmda 5700 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e. )  -> 
( G `  z
)  e.  NN0 )
1817nn0zd 9463 . . . . . . . . . 10  |-  ( (
ph  /\  z  e. )  -> 
( G `  z
)  e.  ZZ )
19 zdceq 9418 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  ZZ  /\  ( G `  z )  e.  ZZ )  -> DECID  ( F `  z )  =  ( G `  z ) )
2016, 18, 19syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  z  e. )  -> DECID  ( F `  z )  =  ( G `  z ) )
2112, 14, 20ifcldcd 3598 . . . . . . . 8  |-  ( (
ph  /\  z  e. )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  e.  om )
225, 9, 10, 21fvmptd3 5658 . . . . . . 7  |-  ( (
ph  /\  z  e. )  -> 
( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 z )  =  if ( ( F `
 z )  =  ( G `  z
) ,  1o ,  (/) ) )
23 1lt2o 6509 . . . . . . . . . . . . 13  |-  1o  e.  2o
2423a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e. )  ->  1o  e.  2o )
25 0lt2o 6508 . . . . . . . . . . . . 13  |-  (/)  e.  2o
2625a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e. )  ->  (/) 
e.  2o )
271ffvelcdmda 5700 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e. )  -> 
( F `  x
)  e.  NN0 )
2827nn0zd 9463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e. )  -> 
( F `  x
)  e.  ZZ )
293ffvelcdmda 5700 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e. )  -> 
( G `  x
)  e.  NN0 )
3029nn0zd 9463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e. )  -> 
( G `  x
)  e.  ZZ )
31 zdceq 9418 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  e.  ZZ  /\  ( G `  x )  e.  ZZ )  -> DECID  ( F `  x )  =  ( G `  x ) )
3228, 30, 31syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e. )  -> DECID  ( F `  x )  =  ( G `  x ) )
3324, 26, 32ifcldcd 3598 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e. )  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  e.  2o )
3433fmpttd 5720 . . . . . . . . . 10  |-  ( ph  ->  ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) : --> 2o )
35 2onn 6588 . . . . . . . . . . . 12  |-  2o  e.  om
3635elexi 2775 . . . . . . . . . . 11  |-  2o  e.  _V
37 nninfex 7196 . . . . . . . . . . 11  |-  e.  _V
3836, 37elmap 6745 . . . . . . . . . 10  |-  ( ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )  e.  ( 2o  ^m )  <->  ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) : --> 2o )
3934, 38sylibr 134 . . . . . . . . 9  |-  ( ph  ->  ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )  e.  ( 2o  ^m ) )
40 fveq2 5561 . . . . . . . . . . . . 13  |-  ( x  =  ( w  e. 
om  |->  1o )  -> 
( F `  x
)  =  ( F `
 ( w  e. 
om  |->  1o ) ) )
41 fveq2 5561 . . . . . . . . . . . . 13  |-  ( x  =  ( w  e. 
om  |->  1o )  -> 
( G `  x
)  =  ( G `
 ( w  e. 
om  |->  1o ) ) )
4240, 41eqeq12d 2211 . . . . . . . . . . . 12  |-  ( x  =  ( w  e. 
om  |->  1o )  -> 
( ( F `  x )  =  ( G `  x )  <-> 
( F `  (
w  e.  om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ) )
4342ifbid 3583 . . . . . . . . . . 11  |-  ( x  =  ( w  e. 
om  |->  1o )  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  =  if (
( F `  (
w  e.  om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ,  1o ,  (/) ) )
44 infnninf 7199 . . . . . . . . . . . 12  |-  ( w  e.  om  |->  1o )  e.
4544a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  ( w  e.  om  |->  1o )  e. )
46 nninffeq.oo . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  (
x  e.  om  |->  1o ) )  =  ( G `  ( x  e.  om  |->  1o ) ) )
47 eqidd 2197 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  1o  =  1o )
4847cbvmptv 4130 . . . . . . . . . . . . . . 15  |-  ( x  e.  om  |->  1o )  =  ( w  e. 
om  |->  1o )
4948fveq2i 5564 . . . . . . . . . . . . . 14  |-  ( F `
 ( x  e. 
om  |->  1o ) )  =  ( F `  ( w  e.  om  |->  1o ) )
5048fveq2i 5564 . . . . . . . . . . . . . 14  |-  ( G `
 ( x  e. 
om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) )
5146, 49, 503eqtr3g 2252 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  (
w  e.  om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) )
5251iftrued 3569 . . . . . . . . . . . 12  |-  ( ph  ->  if ( ( F `
 ( w  e. 
om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ,  1o ,  (/) )  =  1o )
5352, 11eqeltrdi 2287 . . . . . . . . . . 11  |-  ( ph  ->  if ( ( F `
 ( w  e. 
om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ,  1o ,  (/) )  e.  om )
545, 43, 45, 53fvmptd3 5658 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( w  e. 
om  |->  1o ) )  =  if ( ( F `  ( w  e.  om  |->  1o ) )  =  ( G `
 ( w  e. 
om  |->  1o ) ) ,  1o ,  (/) ) )
5554, 52eqtrd 2229 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( w  e. 
om  |->  1o ) )  =  1o )
56 nninffeq.n . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
57 fveq2 5561 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  -> 
( F `  x
)  =  ( F `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
58 fveq2 5561 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  -> 
( G `  x
)  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
5957, 58eqeq12d 2211 . . . . . . . . . . . . . . 15  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  -> 
( ( F `  x )  =  ( G `  x )  <-> 
( F `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ) )
6059ifbid 3583 . . . . . . . . . . . . . 14  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  =  if (
( F `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) ) )
61 nnnninf 7201 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
)
6261ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
)
63 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
6463iftrued 3569 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  if ( ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) )  =  1o )
6564, 11eqeltrdi 2287 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  if ( ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) )  e.  om )
665, 60, 62, 65fvmptd3 5658 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  (
( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  if ( ( F `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) ) )
6766, 64eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  (
( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
6867ex 115 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  om )  ->  ( ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  ->  ( (
x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
6968ralimdva 2564 . . . . . . . . . 10  |-  ( ph  ->  ( A. n  e. 
om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  ->  A. n  e.  om  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
7056, 69mpd 13 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  om  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
7139, 55, 70nninfall 15740 . . . . . . . 8  |-  ( ph  ->  A. z  e.  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 z )  =  1o )
7271r19.21bi 2585 . . . . . . 7  |-  ( (
ph  /\  z  e. )  -> 
( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 z )  =  1o )
7322, 72eqtr3d 2231 . . . . . 6  |-  ( (
ph  /\  z  e. )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  =  1o )
7473adantr 276 . . . . 5  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  =  1o )
75 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  -.  ( F `  z )  =  ( G `  z ) )
7675iffalsed 3572 . . . . 5  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  =  (/) )
7774, 76eqtr3d 2231 . . . 4  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  1o  =  (/) )
78 1n0 6499 . . . . . 6  |-  1o  =/=  (/)
7978neii 2369 . . . . 5  |-  -.  1o  =  (/)
8079a1i 9 . . . 4  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  -.  1o  =  (/) )
8177, 80pm2.65da 662 . . 3  |-  ( (
ph  /\  z  e. )  ->  -.  -.  ( F `  z )  =  ( G `  z ) )
82 exmiddc 837 . . . 4  |-  (DECID  ( F `
 z )  =  ( G `  z
)  ->  ( ( F `  z )  =  ( G `  z )  \/  -.  ( F `  z )  =  ( G `  z ) ) )
8320, 82syl 14 . . 3  |-  ( (
ph  /\  z  e. )  -> 
( ( F `  z )  =  ( G `  z )  \/  -.  ( F `
 z )  =  ( G `  z
) ) )
8481, 83ecased 1360 . 2  |-  ( (
ph  /\  z  e. )  -> 
( F `  z
)  =  ( G `
 z ) )
852, 4, 84eqfnfvd 5665 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475   (/)c0 3451   ifcif 3562    |-> cmpt 4095   omcom 4627   -->wf 5255   ` cfv 5259  (class class class)co 5925   1oc1o 6476   2oc2o 6477    ^m cmap 6716  ℕxnninf 7194   NN0cn0 9266   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1o 6483  df-2o 6484  df-map 6718  df-nninf 7195  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator