Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninffeq Unicode version

Theorem nninffeq 16159
Description: Equality of two functions on ℕ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one,  |-  ( ph  ->  A. n  e.  suc  om
... ). (Contributed by Jim Kingdon, 4-Aug-2023.)
Hypotheses
Ref Expression
nninffeq.f  |-  ( ph  ->  F : --> NN0 )
nninffeq.g  |-  ( ph  ->  G : --> NN0 )
nninffeq.oo  |-  ( ph  ->  ( F `  (
x  e.  om  |->  1o ) )  =  ( G `  ( x  e.  om  |->  1o ) ) )
nninffeq.n  |-  ( ph  ->  A. n  e.  om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
Assertion
Ref Expression
nninffeq  |-  ( ph  ->  F  =  G )
Distinct variable groups:    i, F, n, x    i, G, n, x    ph, i, n, x

Proof of Theorem nninffeq
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninffeq.f . . 3  |-  ( ph  ->  F : --> NN0 )
21ffnd 5446 . 2  |-  ( ph  ->  F  Fn )
3 nninffeq.g . . 3  |-  ( ph  ->  G : --> NN0 )
43ffnd 5446 . 2  |-  ( ph  ->  G  Fn )
5 eqid 2207 . . . . . . . 8  |-  ( x  e.  |->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )  =  ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )
6 fveq2 5599 . . . . . . . . . 10  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
7 fveq2 5599 . . . . . . . . . 10  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
86, 7eqeq12d 2222 . . . . . . . . 9  |-  ( x  =  z  ->  (
( F `  x
)  =  ( G `
 x )  <->  ( F `  z )  =  ( G `  z ) ) )
98ifbid 3601 . . . . . . . 8  |-  ( x  =  z  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  =  if (
( F `  z
)  =  ( G `
 z ) ,  1o ,  (/) ) )
10 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  z  e. )  -> 
z  e. )
11 1onn 6629 . . . . . . . . . 10  |-  1o  e.  om
1211a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  z  e. )  ->  1o  e.  om )
13 peano1 4660 . . . . . . . . . 10  |-  (/)  e.  om
1413a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  z  e. )  ->  (/) 
e.  om )
151ffvelcdmda 5738 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e. )  -> 
( F `  z
)  e.  NN0 )
1615nn0zd 9528 . . . . . . . . . 10  |-  ( (
ph  /\  z  e. )  -> 
( F `  z
)  e.  ZZ )
173ffvelcdmda 5738 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e. )  -> 
( G `  z
)  e.  NN0 )
1817nn0zd 9528 . . . . . . . . . 10  |-  ( (
ph  /\  z  e. )  -> 
( G `  z
)  e.  ZZ )
19 zdceq 9483 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  ZZ  /\  ( G `  z )  e.  ZZ )  -> DECID  ( F `  z )  =  ( G `  z ) )
2016, 18, 19syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  z  e. )  -> DECID  ( F `  z )  =  ( G `  z ) )
2112, 14, 20ifcldcd 3617 . . . . . . . 8  |-  ( (
ph  /\  z  e. )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  e.  om )
225, 9, 10, 21fvmptd3 5696 . . . . . . 7  |-  ( (
ph  /\  z  e. )  -> 
( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 z )  =  if ( ( F `
 z )  =  ( G `  z
) ,  1o ,  (/) ) )
23 1lt2o 6551 . . . . . . . . . . . . 13  |-  1o  e.  2o
2423a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e. )  ->  1o  e.  2o )
25 0lt2o 6550 . . . . . . . . . . . . 13  |-  (/)  e.  2o
2625a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e. )  ->  (/) 
e.  2o )
271ffvelcdmda 5738 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e. )  -> 
( F `  x
)  e.  NN0 )
2827nn0zd 9528 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e. )  -> 
( F `  x
)  e.  ZZ )
293ffvelcdmda 5738 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e. )  -> 
( G `  x
)  e.  NN0 )
3029nn0zd 9528 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e. )  -> 
( G `  x
)  e.  ZZ )
31 zdceq 9483 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  e.  ZZ  /\  ( G `  x )  e.  ZZ )  -> DECID  ( F `  x )  =  ( G `  x ) )
3228, 30, 31syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e. )  -> DECID  ( F `  x )  =  ( G `  x ) )
3324, 26, 32ifcldcd 3617 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e. )  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  e.  2o )
3433fmpttd 5758 . . . . . . . . . 10  |-  ( ph  ->  ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) : --> 2o )
35 2onn 6630 . . . . . . . . . . . 12  |-  2o  e.  om
3635elexi 2789 . . . . . . . . . . 11  |-  2o  e.  _V
37 nninfex 7249 . . . . . . . . . . 11  |-  e.  _V
3836, 37elmap 6787 . . . . . . . . . 10  |-  ( ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )  e.  ( 2o  ^m )  <->  ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) : --> 2o )
3934, 38sylibr 134 . . . . . . . . 9  |-  ( ph  ->  ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )  e.  ( 2o  ^m ) )
40 fveq2 5599 . . . . . . . . . . . . 13  |-  ( x  =  ( w  e. 
om  |->  1o )  -> 
( F `  x
)  =  ( F `
 ( w  e. 
om  |->  1o ) ) )
41 fveq2 5599 . . . . . . . . . . . . 13  |-  ( x  =  ( w  e. 
om  |->  1o )  -> 
( G `  x
)  =  ( G `
 ( w  e. 
om  |->  1o ) ) )
4240, 41eqeq12d 2222 . . . . . . . . . . . 12  |-  ( x  =  ( w  e. 
om  |->  1o )  -> 
( ( F `  x )  =  ( G `  x )  <-> 
( F `  (
w  e.  om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ) )
4342ifbid 3601 . . . . . . . . . . 11  |-  ( x  =  ( w  e. 
om  |->  1o )  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  =  if (
( F `  (
w  e.  om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ,  1o ,  (/) ) )
44 infnninf 7252 . . . . . . . . . . . 12  |-  ( w  e.  om  |->  1o )  e.
4544a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  ( w  e.  om  |->  1o )  e. )
46 nninffeq.oo . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  (
x  e.  om  |->  1o ) )  =  ( G `  ( x  e.  om  |->  1o ) ) )
47 eqidd 2208 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  1o  =  1o )
4847cbvmptv 4156 . . . . . . . . . . . . . . 15  |-  ( x  e.  om  |->  1o )  =  ( w  e. 
om  |->  1o )
4948fveq2i 5602 . . . . . . . . . . . . . 14  |-  ( F `
 ( x  e. 
om  |->  1o ) )  =  ( F `  ( w  e.  om  |->  1o ) )
5048fveq2i 5602 . . . . . . . . . . . . . 14  |-  ( G `
 ( x  e. 
om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) )
5146, 49, 503eqtr3g 2263 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  (
w  e.  om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) )
5251iftrued 3586 . . . . . . . . . . . 12  |-  ( ph  ->  if ( ( F `
 ( w  e. 
om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ,  1o ,  (/) )  =  1o )
5352, 11eqeltrdi 2298 . . . . . . . . . . 11  |-  ( ph  ->  if ( ( F `
 ( w  e. 
om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ,  1o ,  (/) )  e.  om )
545, 43, 45, 53fvmptd3 5696 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( w  e. 
om  |->  1o ) )  =  if ( ( F `  ( w  e.  om  |->  1o ) )  =  ( G `
 ( w  e. 
om  |->  1o ) ) ,  1o ,  (/) ) )
5554, 52eqtrd 2240 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( w  e. 
om  |->  1o ) )  =  1o )
56 nninffeq.n . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
57 fveq2 5599 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  -> 
( F `  x
)  =  ( F `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
58 fveq2 5599 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  -> 
( G `  x
)  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
5957, 58eqeq12d 2222 . . . . . . . . . . . . . . 15  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  -> 
( ( F `  x )  =  ( G `  x )  <-> 
( F `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ) )
6059ifbid 3601 . . . . . . . . . . . . . 14  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  =  if (
( F `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) ) )
61 nnnninf 7254 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
)
6261ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
)
63 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
6463iftrued 3586 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  if ( ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) )  =  1o )
6564, 11eqeltrdi 2298 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  if ( ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) )  e.  om )
665, 60, 62, 65fvmptd3 5696 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  (
( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  if ( ( F `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) ) )
6766, 64eqtrd 2240 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  (
( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
6867ex 115 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  om )  ->  ( ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  ->  ( (
x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
6968ralimdva 2575 . . . . . . . . . 10  |-  ( ph  ->  ( A. n  e. 
om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  ->  A. n  e.  om  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
7056, 69mpd 13 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  om  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
7139, 55, 70nninfall 16148 . . . . . . . 8  |-  ( ph  ->  A. z  e.  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 z )  =  1o )
7271r19.21bi 2596 . . . . . . 7  |-  ( (
ph  /\  z  e. )  -> 
( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 z )  =  1o )
7322, 72eqtr3d 2242 . . . . . 6  |-  ( (
ph  /\  z  e. )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  =  1o )
7473adantr 276 . . . . 5  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  =  1o )
75 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  -.  ( F `  z )  =  ( G `  z ) )
7675iffalsed 3589 . . . . 5  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  =  (/) )
7774, 76eqtr3d 2242 . . . 4  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  1o  =  (/) )
78 1n0 6541 . . . . . 6  |-  1o  =/=  (/)
7978neii 2380 . . . . 5  |-  -.  1o  =  (/)
8079a1i 9 . . . 4  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  -.  1o  =  (/) )
8177, 80pm2.65da 663 . . 3  |-  ( (
ph  /\  z  e. )  ->  -.  -.  ( F `  z )  =  ( G `  z ) )
82 exmiddc 838 . . . 4  |-  (DECID  ( F `
 z )  =  ( G `  z
)  ->  ( ( F `  z )  =  ( G `  z )  \/  -.  ( F `  z )  =  ( G `  z ) ) )
8320, 82syl 14 . . 3  |-  ( (
ph  /\  z  e. )  -> 
( ( F `  z )  =  ( G `  z )  \/  -.  ( F `
 z )  =  ( G `  z
) ) )
8481, 83ecased 1362 . 2  |-  ( (
ph  /\  z  e. )  -> 
( F `  z
)  =  ( G `
 z ) )
852, 4, 84eqfnfvd 5703 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2178   A.wral 2486   (/)c0 3468   ifcif 3579    |-> cmpt 4121   omcom 4656   -->wf 5286   ` cfv 5290  (class class class)co 5967   1oc1o 6518   2oc2o 6519    ^m cmap 6758  ℕxnninf 7247   NN0cn0 9330   ZZcz 9407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-map 6760  df-nninf 7248  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator