Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  nninffeq Unicode version

Theorem nninffeq 14425
Description: Equality of two functions on ℕ which agree at every integer and at the point at infinity. From an online post by Martin Escardo. Remark: the last two hypotheses can be grouped into one,  |-  ( ph  ->  A. n  e.  suc  om
... ). (Contributed by Jim Kingdon, 4-Aug-2023.)
Hypotheses
Ref Expression
nninffeq.f  |-  ( ph  ->  F : --> NN0 )
nninffeq.g  |-  ( ph  ->  G : --> NN0 )
nninffeq.oo  |-  ( ph  ->  ( F `  (
x  e.  om  |->  1o ) )  =  ( G `  ( x  e.  om  |->  1o ) ) )
nninffeq.n  |-  ( ph  ->  A. n  e.  om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
Assertion
Ref Expression
nninffeq  |-  ( ph  ->  F  =  G )
Distinct variable groups:    i, F, n, x    i, G, n, x    ph, i, n, x

Proof of Theorem nninffeq
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninffeq.f . . 3  |-  ( ph  ->  F : --> NN0 )
21ffnd 5362 . 2  |-  ( ph  ->  F  Fn )
3 nninffeq.g . . 3  |-  ( ph  ->  G : --> NN0 )
43ffnd 5362 . 2  |-  ( ph  ->  G  Fn )
5 eqid 2177 . . . . . . . 8  |-  ( x  e.  |->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )  =  ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )
6 fveq2 5511 . . . . . . . . . 10  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
7 fveq2 5511 . . . . . . . . . 10  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
86, 7eqeq12d 2192 . . . . . . . . 9  |-  ( x  =  z  ->  (
( F `  x
)  =  ( G `
 x )  <->  ( F `  z )  =  ( G `  z ) ) )
98ifbid 3555 . . . . . . . 8  |-  ( x  =  z  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  =  if (
( F `  z
)  =  ( G `
 z ) ,  1o ,  (/) ) )
10 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  z  e. )  -> 
z  e. )
11 1onn 6515 . . . . . . . . . 10  |-  1o  e.  om
1211a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  z  e. )  ->  1o  e.  om )
13 peano1 4590 . . . . . . . . . 10  |-  (/)  e.  om
1413a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  z  e. )  ->  (/) 
e.  om )
151ffvelcdmda 5647 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e. )  -> 
( F `  z
)  e.  NN0 )
1615nn0zd 9362 . . . . . . . . . 10  |-  ( (
ph  /\  z  e. )  -> 
( F `  z
)  e.  ZZ )
173ffvelcdmda 5647 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e. )  -> 
( G `  z
)  e.  NN0 )
1817nn0zd 9362 . . . . . . . . . 10  |-  ( (
ph  /\  z  e. )  -> 
( G `  z
)  e.  ZZ )
19 zdceq 9317 . . . . . . . . . 10  |-  ( ( ( F `  z
)  e.  ZZ  /\  ( G `  z )  e.  ZZ )  -> DECID  ( F `  z )  =  ( G `  z ) )
2016, 18, 19syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  z  e. )  -> DECID  ( F `  z )  =  ( G `  z ) )
2112, 14, 20ifcldcd 3569 . . . . . . . 8  |-  ( (
ph  /\  z  e. )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  e.  om )
225, 9, 10, 21fvmptd3 5605 . . . . . . 7  |-  ( (
ph  /\  z  e. )  -> 
( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 z )  =  if ( ( F `
 z )  =  ( G `  z
) ,  1o ,  (/) ) )
23 1lt2o 6437 . . . . . . . . . . . . 13  |-  1o  e.  2o
2423a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e. )  ->  1o  e.  2o )
25 0lt2o 6436 . . . . . . . . . . . . 13  |-  (/)  e.  2o
2625a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e. )  ->  (/) 
e.  2o )
271ffvelcdmda 5647 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e. )  -> 
( F `  x
)  e.  NN0 )
2827nn0zd 9362 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e. )  -> 
( F `  x
)  e.  ZZ )
293ffvelcdmda 5647 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e. )  -> 
( G `  x
)  e.  NN0 )
3029nn0zd 9362 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e. )  -> 
( G `  x
)  e.  ZZ )
31 zdceq 9317 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  e.  ZZ  /\  ( G `  x )  e.  ZZ )  -> DECID  ( F `  x )  =  ( G `  x ) )
3228, 30, 31syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e. )  -> DECID  ( F `  x )  =  ( G `  x ) )
3324, 26, 32ifcldcd 3569 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e. )  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  e.  2o )
3433fmpttd 5667 . . . . . . . . . 10  |-  ( ph  ->  ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) : --> 2o )
35 2onn 6516 . . . . . . . . . . . 12  |-  2o  e.  om
3635elexi 2749 . . . . . . . . . . 11  |-  2o  e.  _V
37 nninfex 7114 . . . . . . . . . . 11  |-  e.  _V
3836, 37elmap 6671 . . . . . . . . . 10  |-  ( ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )  e.  ( 2o  ^m )  <->  ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) : --> 2o )
3934, 38sylibr 134 . . . . . . . . 9  |-  ( ph  ->  ( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) )  e.  ( 2o  ^m ) )
40 fveq2 5511 . . . . . . . . . . . . 13  |-  ( x  =  ( w  e. 
om  |->  1o )  -> 
( F `  x
)  =  ( F `
 ( w  e. 
om  |->  1o ) ) )
41 fveq2 5511 . . . . . . . . . . . . 13  |-  ( x  =  ( w  e. 
om  |->  1o )  -> 
( G `  x
)  =  ( G `
 ( w  e. 
om  |->  1o ) ) )
4240, 41eqeq12d 2192 . . . . . . . . . . . 12  |-  ( x  =  ( w  e. 
om  |->  1o )  -> 
( ( F `  x )  =  ( G `  x )  <-> 
( F `  (
w  e.  om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ) )
4342ifbid 3555 . . . . . . . . . . 11  |-  ( x  =  ( w  e. 
om  |->  1o )  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  =  if (
( F `  (
w  e.  om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ,  1o ,  (/) ) )
44 infnninf 7116 . . . . . . . . . . . 12  |-  ( w  e.  om  |->  1o )  e.
4544a1i 9 . . . . . . . . . . 11  |-  ( ph  ->  ( w  e.  om  |->  1o )  e. )
46 nninffeq.oo . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F `  (
x  e.  om  |->  1o ) )  =  ( G `  ( x  e.  om  |->  1o ) ) )
47 eqidd 2178 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  1o  =  1o )
4847cbvmptv 4096 . . . . . . . . . . . . . . 15  |-  ( x  e.  om  |->  1o )  =  ( w  e. 
om  |->  1o )
4948fveq2i 5514 . . . . . . . . . . . . . 14  |-  ( F `
 ( x  e. 
om  |->  1o ) )  =  ( F `  ( w  e.  om  |->  1o ) )
5048fveq2i 5514 . . . . . . . . . . . . . 14  |-  ( G `
 ( x  e. 
om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) )
5146, 49, 503eqtr3g 2233 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F `  (
w  e.  om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) )
5251iftrued 3541 . . . . . . . . . . . 12  |-  ( ph  ->  if ( ( F `
 ( w  e. 
om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ,  1o ,  (/) )  =  1o )
5352, 11eqeltrdi 2268 . . . . . . . . . . 11  |-  ( ph  ->  if ( ( F `
 ( w  e. 
om  |->  1o ) )  =  ( G `  ( w  e.  om  |->  1o ) ) ,  1o ,  (/) )  e.  om )
545, 43, 45, 53fvmptd3 5605 . . . . . . . . . 10  |-  ( ph  ->  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( w  e. 
om  |->  1o ) )  =  if ( ( F `  ( w  e.  om  |->  1o ) )  =  ( G `
 ( w  e. 
om  |->  1o ) ) ,  1o ,  (/) ) )
5554, 52eqtrd 2210 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( w  e. 
om  |->  1o ) )  =  1o )
56 nninffeq.n . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
57 fveq2 5511 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  -> 
( F `  x
)  =  ( F `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
58 fveq2 5511 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  -> 
( G `  x
)  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
5957, 58eqeq12d 2192 . . . . . . . . . . . . . . 15  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  -> 
( ( F `  x )  =  ( G `  x )  <-> 
( F `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ) )
6059ifbid 3555 . . . . . . . . . . . . . 14  |-  ( x  =  ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) )  ->  if ( ( F `  x )  =  ( G `  x ) ,  1o ,  (/) )  =  if (
( F `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) ) )
61 nnnninf 7118 . . . . . . . . . . . . . . 15  |-  ( n  e.  om  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
)
6261ad2antlr 489 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) )  e.
)
63 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )
6463iftrued 3541 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  if ( ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) )  =  1o )
6564, 11eqeltrdi 2268 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  if ( ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) )  e.  om )
665, 60, 62, 65fvmptd3 5605 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  (
( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  if ( ( F `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) ,  1o ,  (/) ) )
6766, 64eqtrd 2210 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  om )  /\  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) ) )  ->  (
( x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
6867ex 115 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  om )  ->  ( ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  ->  ( (
x  e. 
|->  if ( ( F `
 x )  =  ( G `  x
) ,  1o ,  (/) ) ) `  (
i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
6968ralimdva 2544 . . . . . . . . . 10  |-  ( ph  ->  ( A. n  e. 
om  ( F `  ( i  e.  om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  ( G `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  ->  A. n  e.  om  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o ) )
7056, 69mpd 13 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  om  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 ( i  e. 
om  |->  if ( i  e.  n ,  1o ,  (/) ) ) )  =  1o )
7139, 55, 70nninfall 14414 . . . . . . . 8  |-  ( ph  ->  A. z  e.  ( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 z )  =  1o )
7271r19.21bi 2565 . . . . . . 7  |-  ( (
ph  /\  z  e. )  -> 
( ( x  e.  |->  if ( ( F `  x
)  =  ( G `
 x ) ,  1o ,  (/) ) ) `
 z )  =  1o )
7322, 72eqtr3d 2212 . . . . . 6  |-  ( (
ph  /\  z  e. )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  =  1o )
7473adantr 276 . . . . 5  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  =  1o )
75 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  -.  ( F `  z )  =  ( G `  z ) )
7675iffalsed 3544 . . . . 5  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  if ( ( F `  z )  =  ( G `  z ) ,  1o ,  (/) )  =  (/) )
7774, 76eqtr3d 2212 . . . 4  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  1o  =  (/) )
78 1n0 6427 . . . . . 6  |-  1o  =/=  (/)
7978neii 2349 . . . . 5  |-  -.  1o  =  (/)
8079a1i 9 . . . 4  |-  ( ( ( ph  /\  z  e. )  /\  -.  ( F `
 z )  =  ( G `  z
) )  ->  -.  1o  =  (/) )
8177, 80pm2.65da 661 . . 3  |-  ( (
ph  /\  z  e. )  ->  -.  -.  ( F `  z )  =  ( G `  z ) )
82 exmiddc 836 . . . 4  |-  (DECID  ( F `
 z )  =  ( G `  z
)  ->  ( ( F `  z )  =  ( G `  z )  \/  -.  ( F `  z )  =  ( G `  z ) ) )
8320, 82syl 14 . . 3  |-  ( (
ph  /\  z  e. )  -> 
( ( F `  z )  =  ( G `  z )  \/  -.  ( F `
 z )  =  ( G `  z
) ) )
8481, 83ecased 1349 . 2  |-  ( (
ph  /\  z  e. )  -> 
( F `  z
)  =  ( G `
 z ) )
852, 4, 84eqfnfvd 5612 1  |-  ( ph  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   (/)c0 3422   ifcif 3534    |-> cmpt 4061   omcom 4586   -->wf 5208   ` cfv 5212  (class class class)co 5869   1oc1o 6404   2oc2o 6405    ^m cmap 6642  ℕxnninf 7112   NN0cn0 9165   ZZcz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1o 6411  df-2o 6412  df-map 6644  df-nninf 7113  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator