| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrpnfdc | Unicode version | ||
| Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrpnfdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9968 |
. 2
| |
| 2 | renepnf 8190 |
. . . . . 6
| |
| 3 | 2 | neneqd 2421 |
. . . . 5
|
| 4 | 3 | olcd 739 |
. . . 4
|
| 5 | df-dc 840 |
. . . 4
| |
| 6 | 4, 5 | sylibr 134 |
. . 3
|
| 7 | orc 717 |
. . . 4
| |
| 8 | 7, 5 | sylibr 134 |
. . 3
|
| 9 | mnfnepnf 8198 |
. . . . . . 7
| |
| 10 | 9 | neii 2402 |
. . . . . 6
|
| 11 | eqeq1 2236 |
. . . . . 6
| |
| 12 | 10, 11 | mtbiri 679 |
. . . . 5
|
| 13 | 12 | olcd 739 |
. . . 4
|
| 14 | 13, 5 | sylibr 134 |
. . 3
|
| 15 | 6, 8, 14 | 3jaoi 1337 |
. 2
|
| 16 | 1, 15 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-un 4523 ax-cnex 8086 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3888 df-pnf 8179 df-mnf 8180 df-xr 8181 |
| This theorem is referenced by: xaddf 10036 xaddval 10037 xaddpnf1 10038 xaddcom 10053 xnegdi 10060 xleadd1a 10065 xlesubadd 10075 xrmaxiflemcl 11751 xrmaxifle 11752 xrmaxiflemab 11753 xrmaxiflemlub 11754 xrmaxiflemcom 11755 xrmaxadd 11767 xblss2ps 15072 xblss2 15073 |
| Copyright terms: Public domain | W3C validator |