| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrpnfdc | Unicode version | ||
| Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrpnfdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9928 |
. 2
| |
| 2 | renepnf 8150 |
. . . . . 6
| |
| 3 | 2 | neneqd 2398 |
. . . . 5
|
| 4 | 3 | olcd 736 |
. . . 4
|
| 5 | df-dc 837 |
. . . 4
| |
| 6 | 4, 5 | sylibr 134 |
. . 3
|
| 7 | orc 714 |
. . . 4
| |
| 8 | 7, 5 | sylibr 134 |
. . 3
|
| 9 | mnfnepnf 8158 |
. . . . . . 7
| |
| 10 | 9 | neii 2379 |
. . . . . 6
|
| 11 | eqeq1 2213 |
. . . . . 6
| |
| 12 | 10, 11 | mtbiri 677 |
. . . . 5
|
| 13 | 12 | olcd 736 |
. . . 4
|
| 14 | 13, 5 | sylibr 134 |
. . 3
|
| 15 | 6, 8, 14 | 3jaoi 1316 |
. 2
|
| 16 | 1, 15 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-un 4493 ax-cnex 8046 ax-resscn 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-rex 2491 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3860 df-pnf 8139 df-mnf 8140 df-xr 8141 |
| This theorem is referenced by: xaddf 9996 xaddval 9997 xaddpnf1 9998 xaddcom 10013 xnegdi 10020 xleadd1a 10025 xlesubadd 10035 xrmaxiflemcl 11641 xrmaxifle 11642 xrmaxiflemab 11643 xrmaxiflemlub 11644 xrmaxiflemcom 11645 xrmaxadd 11657 xblss2ps 14961 xblss2 14962 |
| Copyright terms: Public domain | W3C validator |