ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc Unicode version

Theorem xrpnfdc 9963
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc  |-  ( A  e.  RR*  -> DECID  A  = +oo )

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9897 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 8119 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2396 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = +oo )
43olcd 735 . . . 4  |-  ( A  e.  RR  ->  ( A  = +oo  \/  -.  A  = +oo )
)
5 df-dc 836 . . . 4  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  -.  A  = +oo ) )
64, 5sylibr 134 . . 3  |-  ( A  e.  RR  -> DECID  A  = +oo )
7 orc 713 . . . 4  |-  ( A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
87, 5sylibr 134 . . 3  |-  ( A  = +oo  -> DECID  A  = +oo )
9 mnfnepnf 8127 . . . . . . 7  |- -oo  =/= +oo
109neii 2377 . . . . . 6  |-  -. -oo  = +oo
11 eqeq1 2211 . . . . . 6  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1210, 11mtbiri 676 . . . . 5  |-  ( A  = -oo  ->  -.  A  = +oo )
1312olcd 735 . . . 4  |-  ( A  = -oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
1413, 5sylibr 134 . . 3  |-  ( A  = -oo  -> DECID  A  = +oo )
156, 8, 143jaoi 1315 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = +oo )
161, 15sylbi 121 1  |-  ( A  e.  RR*  -> DECID  A  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709  DECID wdc 835    \/ w3o 979    = wceq 1372    e. wcel 2175   RRcr 7923   +oocpnf 8103   -oocmnf 8104   RR*cxr 8105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-un 4479  ax-cnex 8015  ax-resscn 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-rex 2489  df-rab 2492  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-uni 3850  df-pnf 8108  df-mnf 8109  df-xr 8110
This theorem is referenced by:  xaddf  9965  xaddval  9966  xaddpnf1  9967  xaddcom  9982  xnegdi  9989  xleadd1a  9994  xlesubadd  10004  xrmaxiflemcl  11527  xrmaxifle  11528  xrmaxiflemab  11529  xrmaxiflemlub  11530  xrmaxiflemcom  11531  xrmaxadd  11543  xblss2ps  14847  xblss2  14848
  Copyright terms: Public domain W3C validator