ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc Unicode version

Theorem xrpnfdc 9844
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc  |-  ( A  e.  RR*  -> DECID  A  = +oo )

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9778 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 8007 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2368 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = +oo )
43olcd 734 . . . 4  |-  ( A  e.  RR  ->  ( A  = +oo  \/  -.  A  = +oo )
)
5 df-dc 835 . . . 4  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  -.  A  = +oo ) )
64, 5sylibr 134 . . 3  |-  ( A  e.  RR  -> DECID  A  = +oo )
7 orc 712 . . . 4  |-  ( A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
87, 5sylibr 134 . . 3  |-  ( A  = +oo  -> DECID  A  = +oo )
9 mnfnepnf 8015 . . . . . . 7  |- -oo  =/= +oo
109neii 2349 . . . . . 6  |-  -. -oo  = +oo
11 eqeq1 2184 . . . . . 6  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1210, 11mtbiri 675 . . . . 5  |-  ( A  = -oo  ->  -.  A  = +oo )
1312olcd 734 . . . 4  |-  ( A  = -oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
1413, 5sylibr 134 . . 3  |-  ( A  = -oo  -> DECID  A  = +oo )
156, 8, 143jaoi 1303 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = +oo )
161, 15sylbi 121 1  |-  ( A  e.  RR*  -> DECID  A  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 708  DECID wdc 834    \/ w3o 977    = wceq 1353    e. wcel 2148   RRcr 7812   +oocpnf 7991   -oocmnf 7992   RR*cxr 7993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-un 4435  ax-cnex 7904  ax-resscn 7905
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-pnf 7996  df-mnf 7997  df-xr 7998
This theorem is referenced by:  xaddf  9846  xaddval  9847  xaddpnf1  9848  xaddcom  9863  xnegdi  9870  xleadd1a  9875  xlesubadd  9885  xrmaxiflemcl  11255  xrmaxifle  11256  xrmaxiflemab  11257  xrmaxiflemlub  11258  xrmaxiflemcom  11259  xrmaxadd  11271  xblss2ps  13943  xblss2  13944
  Copyright terms: Public domain W3C validator