ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc Unicode version

Theorem xrpnfdc 9512
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc  |-  ( A  e.  RR*  -> DECID  A  = +oo )

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9450 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 7731 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2301 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = +oo )
43olcd 706 . . . 4  |-  ( A  e.  RR  ->  ( A  = +oo  \/  -.  A  = +oo )
)
5 df-dc 803 . . . 4  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  -.  A  = +oo ) )
64, 5sylibr 133 . . 3  |-  ( A  e.  RR  -> DECID  A  = +oo )
7 orc 684 . . . 4  |-  ( A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
87, 5sylibr 133 . . 3  |-  ( A  = +oo  -> DECID  A  = +oo )
9 mnfnepnf 7739 . . . . . . 7  |- -oo  =/= +oo
109neii 2282 . . . . . 6  |-  -. -oo  = +oo
11 eqeq1 2119 . . . . . 6  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1210, 11mtbiri 647 . . . . 5  |-  ( A  = -oo  ->  -.  A  = +oo )
1312olcd 706 . . . 4  |-  ( A  = -oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
1413, 5sylibr 133 . . 3  |-  ( A  = -oo  -> DECID  A  = +oo )
156, 8, 143jaoi 1262 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = +oo )
161, 15sylbi 120 1  |-  ( A  e.  RR*  -> DECID  A  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 680  DECID wdc 802    \/ w3o 942    = wceq 1312    e. wcel 1461   RRcr 7540   +oocpnf 7715   -oocmnf 7716   RR*cxr 7717
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-un 4313  ax-cnex 7630  ax-resscn 7631
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-rex 2394  df-rab 2397  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-uni 3701  df-pnf 7720  df-mnf 7721  df-xr 7722
This theorem is referenced by:  xaddf  9514  xaddval  9515  xaddpnf1  9516  xaddcom  9531  xnegdi  9538  xleadd1a  9543  xlesubadd  9553  xrmaxiflemcl  10900  xrmaxifle  10901  xrmaxiflemab  10902  xrmaxiflemlub  10903  xrmaxiflemcom  10904  xrmaxadd  10916  xblss2ps  12387  xblss2  12388
  Copyright terms: Public domain W3C validator