ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc Unicode version

Theorem xrpnfdc 9994
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc  |-  ( A  e.  RR*  -> DECID  A  = +oo )

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9928 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 8150 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2398 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = +oo )
43olcd 736 . . . 4  |-  ( A  e.  RR  ->  ( A  = +oo  \/  -.  A  = +oo )
)
5 df-dc 837 . . . 4  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  -.  A  = +oo ) )
64, 5sylibr 134 . . 3  |-  ( A  e.  RR  -> DECID  A  = +oo )
7 orc 714 . . . 4  |-  ( A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
87, 5sylibr 134 . . 3  |-  ( A  = +oo  -> DECID  A  = +oo )
9 mnfnepnf 8158 . . . . . . 7  |- -oo  =/= +oo
109neii 2379 . . . . . 6  |-  -. -oo  = +oo
11 eqeq1 2213 . . . . . 6  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1210, 11mtbiri 677 . . . . 5  |-  ( A  = -oo  ->  -.  A  = +oo )
1312olcd 736 . . . 4  |-  ( A  = -oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
1413, 5sylibr 134 . . 3  |-  ( A  = -oo  -> DECID  A  = +oo )
156, 8, 143jaoi 1316 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = +oo )
161, 15sylbi 121 1  |-  ( A  e.  RR*  -> DECID  A  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2177   RRcr 7954   +oocpnf 8134   -oocmnf 8135   RR*cxr 8136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-un 4493  ax-cnex 8046  ax-resscn 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-uni 3860  df-pnf 8139  df-mnf 8140  df-xr 8141
This theorem is referenced by:  xaddf  9996  xaddval  9997  xaddpnf1  9998  xaddcom  10013  xnegdi  10020  xleadd1a  10025  xlesubadd  10035  xrmaxiflemcl  11641  xrmaxifle  11642  xrmaxiflemab  11643  xrmaxiflemlub  11644  xrmaxiflemcom  11645  xrmaxadd  11657  xblss2ps  14961  xblss2  14962
  Copyright terms: Public domain W3C validator