ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc Unicode version

Theorem xrpnfdc 9799
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc  |-  ( A  e.  RR*  -> DECID  A  = +oo )

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9733 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 7967 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2361 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = +oo )
43olcd 729 . . . 4  |-  ( A  e.  RR  ->  ( A  = +oo  \/  -.  A  = +oo )
)
5 df-dc 830 . . . 4  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  -.  A  = +oo ) )
64, 5sylibr 133 . . 3  |-  ( A  e.  RR  -> DECID  A  = +oo )
7 orc 707 . . . 4  |-  ( A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
87, 5sylibr 133 . . 3  |-  ( A  = +oo  -> DECID  A  = +oo )
9 mnfnepnf 7975 . . . . . . 7  |- -oo  =/= +oo
109neii 2342 . . . . . 6  |-  -. -oo  = +oo
11 eqeq1 2177 . . . . . 6  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1210, 11mtbiri 670 . . . . 5  |-  ( A  = -oo  ->  -.  A  = +oo )
1312olcd 729 . . . 4  |-  ( A  = -oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
1413, 5sylibr 133 . . 3  |-  ( A  = -oo  -> DECID  A  = +oo )
156, 8, 143jaoi 1298 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = +oo )
161, 15sylbi 120 1  |-  ( A  e.  RR*  -> DECID  A  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 703  DECID wdc 829    \/ w3o 972    = wceq 1348    e. wcel 2141   RRcr 7773   +oocpnf 7951   -oocmnf 7952   RR*cxr 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-un 4418  ax-cnex 7865  ax-resscn 7866
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-pnf 7956  df-mnf 7957  df-xr 7958
This theorem is referenced by:  xaddf  9801  xaddval  9802  xaddpnf1  9803  xaddcom  9818  xnegdi  9825  xleadd1a  9830  xlesubadd  9840  xrmaxiflemcl  11208  xrmaxifle  11209  xrmaxiflemab  11210  xrmaxiflemlub  11211  xrmaxiflemcom  11212  xrmaxadd  11224  xblss2ps  13198  xblss2  13199
  Copyright terms: Public domain W3C validator