ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc Unicode version

Theorem xrpnfdc 9964
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc  |-  ( A  e.  RR*  -> DECID  A  = +oo )

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9898 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 8120 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2397 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = +oo )
43olcd 736 . . . 4  |-  ( A  e.  RR  ->  ( A  = +oo  \/  -.  A  = +oo )
)
5 df-dc 837 . . . 4  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  -.  A  = +oo ) )
64, 5sylibr 134 . . 3  |-  ( A  e.  RR  -> DECID  A  = +oo )
7 orc 714 . . . 4  |-  ( A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
87, 5sylibr 134 . . 3  |-  ( A  = +oo  -> DECID  A  = +oo )
9 mnfnepnf 8128 . . . . . . 7  |- -oo  =/= +oo
109neii 2378 . . . . . 6  |-  -. -oo  = +oo
11 eqeq1 2212 . . . . . 6  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1210, 11mtbiri 677 . . . . 5  |-  ( A  = -oo  ->  -.  A  = +oo )
1312olcd 736 . . . 4  |-  ( A  = -oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
1413, 5sylibr 134 . . 3  |-  ( A  = -oo  -> DECID  A  = +oo )
156, 8, 143jaoi 1316 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = +oo )
161, 15sylbi 121 1  |-  ( A  e.  RR*  -> DECID  A  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2176   RRcr 7924   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-un 4480  ax-cnex 8016  ax-resscn 8017
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-pnf 8109  df-mnf 8110  df-xr 8111
This theorem is referenced by:  xaddf  9966  xaddval  9967  xaddpnf1  9968  xaddcom  9983  xnegdi  9990  xleadd1a  9995  xlesubadd  10005  xrmaxiflemcl  11556  xrmaxifle  11557  xrmaxiflemab  11558  xrmaxiflemlub  11559  xrmaxiflemcom  11560  xrmaxadd  11572  xblss2ps  14876  xblss2  14877
  Copyright terms: Public domain W3C validator