ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc Unicode version

Theorem xrpnfdc 9778
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc  |-  ( A  e.  RR*  -> DECID  A  = +oo )

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9712 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 7946 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2357 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = +oo )
43olcd 724 . . . 4  |-  ( A  e.  RR  ->  ( A  = +oo  \/  -.  A  = +oo )
)
5 df-dc 825 . . . 4  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  -.  A  = +oo ) )
64, 5sylibr 133 . . 3  |-  ( A  e.  RR  -> DECID  A  = +oo )
7 orc 702 . . . 4  |-  ( A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
87, 5sylibr 133 . . 3  |-  ( A  = +oo  -> DECID  A  = +oo )
9 mnfnepnf 7954 . . . . . . 7  |- -oo  =/= +oo
109neii 2338 . . . . . 6  |-  -. -oo  = +oo
11 eqeq1 2172 . . . . . 6  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1210, 11mtbiri 665 . . . . 5  |-  ( A  = -oo  ->  -.  A  = +oo )
1312olcd 724 . . . 4  |-  ( A  = -oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
1413, 5sylibr 133 . . 3  |-  ( A  = -oo  -> DECID  A  = +oo )
156, 8, 143jaoi 1293 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = +oo )
161, 15sylbi 120 1  |-  ( A  e.  RR*  -> DECID  A  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698  DECID wdc 824    \/ w3o 967    = wceq 1343    e. wcel 2136   RRcr 7752   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-un 4411  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-pnf 7935  df-mnf 7936  df-xr 7937
This theorem is referenced by:  xaddf  9780  xaddval  9781  xaddpnf1  9782  xaddcom  9797  xnegdi  9804  xleadd1a  9809  xlesubadd  9819  xrmaxiflemcl  11186  xrmaxifle  11187  xrmaxiflemab  11188  xrmaxiflemlub  11189  xrmaxiflemcom  11190  xrmaxadd  11202  xblss2ps  13044  xblss2  13045
  Copyright terms: Public domain W3C validator