ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrpnfdc Unicode version

Theorem xrpnfdc 10034
Description: An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrpnfdc  |-  ( A  e.  RR*  -> DECID  A  = +oo )

Proof of Theorem xrpnfdc
StepHypRef Expression
1 elxr 9968 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renepnf 8190 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= +oo )
32neneqd 2421 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = +oo )
43olcd 739 . . . 4  |-  ( A  e.  RR  ->  ( A  = +oo  \/  -.  A  = +oo )
)
5 df-dc 840 . . . 4  |-  (DECID  A  = +oo  <->  ( A  = +oo  \/  -.  A  = +oo ) )
64, 5sylibr 134 . . 3  |-  ( A  e.  RR  -> DECID  A  = +oo )
7 orc 717 . . . 4  |-  ( A  = +oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
87, 5sylibr 134 . . 3  |-  ( A  = +oo  -> DECID  A  = +oo )
9 mnfnepnf 8198 . . . . . . 7  |- -oo  =/= +oo
109neii 2402 . . . . . 6  |-  -. -oo  = +oo
11 eqeq1 2236 . . . . . 6  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
1210, 11mtbiri 679 . . . . 5  |-  ( A  = -oo  ->  -.  A  = +oo )
1312olcd 739 . . . 4  |-  ( A  = -oo  ->  ( A  = +oo  \/  -.  A  = +oo )
)
1413, 5sylibr 134 . . 3  |-  ( A  = -oo  -> DECID  A  = +oo )
156, 8, 143jaoi 1337 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = +oo )
161, 15sylbi 121 1  |-  ( A  e.  RR*  -> DECID  A  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 713  DECID wdc 839    \/ w3o 1001    = wceq 1395    e. wcel 2200   RRcr 7994   +oocpnf 8174   -oocmnf 8175   RR*cxr 8176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-un 4523  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-pnf 8179  df-mnf 8180  df-xr 8181
This theorem is referenced by:  xaddf  10036  xaddval  10037  xaddpnf1  10038  xaddcom  10053  xnegdi  10060  xleadd1a  10065  xlesubadd  10075  xrmaxiflemcl  11751  xrmaxifle  11752  xrmaxiflemab  11753  xrmaxiflemlub  11754  xrmaxiflemcom  11755  xrmaxadd  11767  xblss2ps  15072  xblss2  15073
  Copyright terms: Public domain W3C validator