ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddid1 Unicode version

Theorem xaddid1 9759
Description: Extended real version of addid1 8007. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddid1  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )

Proof of Theorem xaddid1
StepHypRef Expression
1 elxr 9676 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 0re 7872 . . . . 5  |-  0  e.  RR
3 rexadd 9749 . . . . 5  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A +e 0 )  =  ( A  +  0 ) )
42, 3mpan2 422 . . . 4  |-  ( A  e.  RR  ->  ( A +e 0 )  =  ( A  + 
0 ) )
5 recn 7859 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
65addid1d 8018 . . . 4  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
74, 6eqtrd 2190 . . 3  |-  ( A  e.  RR  ->  ( A +e 0 )  =  A )
8 0xr 7918 . . . . 5  |-  0  e.  RR*
9 renemnf 7920 . . . . . 6  |-  ( 0  e.  RR  ->  0  =/= -oo )
102, 9ax-mp 5 . . . . 5  |-  0  =/= -oo
11 xaddpnf2 9744 . . . . 5  |-  ( ( 0  e.  RR*  /\  0  =/= -oo )  ->  ( +oo +e 0 )  = +oo )
128, 10, 11mp2an 423 . . . 4  |-  ( +oo +e 0 )  = +oo
13 oveq1 5828 . . . 4  |-  ( A  = +oo  ->  ( A +e 0 )  =  ( +oo +e 0 ) )
14 id 19 . . . 4  |-  ( A  = +oo  ->  A  = +oo )
1512, 13, 143eqtr4a 2216 . . 3  |-  ( A  = +oo  ->  ( A +e 0 )  =  A )
16 renepnf 7919 . . . . . 6  |-  ( 0  e.  RR  ->  0  =/= +oo )
172, 16ax-mp 5 . . . . 5  |-  0  =/= +oo
18 xaddmnf2 9746 . . . . 5  |-  ( ( 0  e.  RR*  /\  0  =/= +oo )  ->  ( -oo +e 0 )  = -oo )
198, 17, 18mp2an 423 . . . 4  |-  ( -oo +e 0 )  = -oo
20 oveq1 5828 . . . 4  |-  ( A  = -oo  ->  ( A +e 0 )  =  ( -oo +e 0 ) )
21 id 19 . . . 4  |-  ( A  = -oo  ->  A  = -oo )
2219, 20, 213eqtr4a 2216 . . 3  |-  ( A  = -oo  ->  ( A +e 0 )  =  A )
237, 15, 223jaoi 1285 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A +e 0 )  =  A )
241, 23sylbi 120 1  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 962    = wceq 1335    e. wcel 2128    =/= wne 2327  (class class class)co 5821   RRcr 7725   0cc0 7726    + caddc 7729   +oocpnf 7903   -oocmnf 7904   RR*cxr 7905   +ecxad 9670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-cnex 7817  ax-resscn 7818  ax-1re 7820  ax-addrcl 7823  ax-0id 7834  ax-rnegex 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-iota 5134  df-fun 5171  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-pnf 7908  df-mnf 7909  df-xr 7910  df-xadd 9673
This theorem is referenced by:  xaddid2  9760  xaddid1d  9761  xnn0xadd0  9764  xpncan  9768  psmetsym  12700  psmetge0  12702  xmetge0  12736  xmetsym  12739
  Copyright terms: Public domain W3C validator