Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddid1 | Unicode version |
Description: Extended real version of addid1 8036. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddid1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9712 | . 2 | |
2 | 0re 7899 | . . . . 5 | |
3 | rexadd 9788 | . . . . 5 | |
4 | 2, 3 | mpan2 422 | . . . 4 |
5 | recn 7886 | . . . . 5 | |
6 | 5 | addid1d 8047 | . . . 4 |
7 | 4, 6 | eqtrd 2198 | . . 3 |
8 | 0xr 7945 | . . . . 5 | |
9 | renemnf 7947 | . . . . . 6 | |
10 | 2, 9 | ax-mp 5 | . . . . 5 |
11 | xaddpnf2 9783 | . . . . 5 | |
12 | 8, 10, 11 | mp2an 423 | . . . 4 |
13 | oveq1 5849 | . . . 4 | |
14 | id 19 | . . . 4 | |
15 | 12, 13, 14 | 3eqtr4a 2225 | . . 3 |
16 | renepnf 7946 | . . . . . 6 | |
17 | 2, 16 | ax-mp 5 | . . . . 5 |
18 | xaddmnf2 9785 | . . . . 5 | |
19 | 8, 17, 18 | mp2an 423 | . . . 4 |
20 | oveq1 5849 | . . . 4 | |
21 | id 19 | . . . 4 | |
22 | 19, 20, 21 | 3eqtr4a 2225 | . . 3 |
23 | 7, 15, 22 | 3jaoi 1293 | . 2 |
24 | 1, 23 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3o 967 wceq 1343 wcel 2136 wne 2336 (class class class)co 5842 cr 7752 cc0 7753 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 cxad 9706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-0id 7861 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-xadd 9709 |
This theorem is referenced by: xaddid2 9799 xaddid1d 9800 xnn0xadd0 9803 xpncan 9807 psmetsym 12969 psmetge0 12971 xmetge0 13005 xmetsym 13008 |
Copyright terms: Public domain | W3C validator |