ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddid1 Unicode version

Theorem xaddid1 10058
Description: Extended real version of addrid 8284. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddid1  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )

Proof of Theorem xaddid1
StepHypRef Expression
1 elxr 9972 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 0re 8146 . . . . 5  |-  0  e.  RR
3 rexadd 10048 . . . . 5  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A +e 0 )  =  ( A  +  0 ) )
42, 3mpan2 425 . . . 4  |-  ( A  e.  RR  ->  ( A +e 0 )  =  ( A  + 
0 ) )
5 recn 8132 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
65addridd 8295 . . . 4  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
74, 6eqtrd 2262 . . 3  |-  ( A  e.  RR  ->  ( A +e 0 )  =  A )
8 0xr 8193 . . . . 5  |-  0  e.  RR*
9 renemnf 8195 . . . . . 6  |-  ( 0  e.  RR  ->  0  =/= -oo )
102, 9ax-mp 5 . . . . 5  |-  0  =/= -oo
11 xaddpnf2 10043 . . . . 5  |-  ( ( 0  e.  RR*  /\  0  =/= -oo )  ->  ( +oo +e 0 )  = +oo )
128, 10, 11mp2an 426 . . . 4  |-  ( +oo +e 0 )  = +oo
13 oveq1 6008 . . . 4  |-  ( A  = +oo  ->  ( A +e 0 )  =  ( +oo +e 0 ) )
14 id 19 . . . 4  |-  ( A  = +oo  ->  A  = +oo )
1512, 13, 143eqtr4a 2288 . . 3  |-  ( A  = +oo  ->  ( A +e 0 )  =  A )
16 renepnf 8194 . . . . . 6  |-  ( 0  e.  RR  ->  0  =/= +oo )
172, 16ax-mp 5 . . . . 5  |-  0  =/= +oo
18 xaddmnf2 10045 . . . . 5  |-  ( ( 0  e.  RR*  /\  0  =/= +oo )  ->  ( -oo +e 0 )  = -oo )
198, 17, 18mp2an 426 . . . 4  |-  ( -oo +e 0 )  = -oo
20 oveq1 6008 . . . 4  |-  ( A  = -oo  ->  ( A +e 0 )  =  ( -oo +e 0 ) )
21 id 19 . . . 4  |-  ( A  = -oo  ->  A  = -oo )
2219, 20, 213eqtr4a 2288 . . 3  |-  ( A  = -oo  ->  ( A +e 0 )  =  A )
237, 15, 223jaoi 1337 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A +e 0 )  =  A )
241, 23sylbi 121 1  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 1001    = wceq 1395    e. wcel 2200    =/= wne 2400  (class class class)co 6001   RRcr 7998   0cc0 7999    + caddc 8002   +oocpnf 8178   -oocmnf 8179   RR*cxr 8180   +ecxad 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-0id 8107  ax-rnegex 8108
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-xadd 9969
This theorem is referenced by:  xaddid2  10059  xaddid1d  10060  xnn0xadd0  10063  xpncan  10067  psmetsym  15003  psmetge0  15005  xmetge0  15039  xmetsym  15042
  Copyright terms: Public domain W3C validator