| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddid1 | Unicode version | ||
| Description: Extended real version of addrid 8181. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xaddid1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9868 |
. 2
| |
| 2 | 0re 8043 |
. . . . 5
| |
| 3 | rexadd 9944 |
. . . . 5
| |
| 4 | 2, 3 | mpan2 425 |
. . . 4
|
| 5 | recn 8029 |
. . . . 5
| |
| 6 | 5 | addridd 8192 |
. . . 4
|
| 7 | 4, 6 | eqtrd 2229 |
. . 3
|
| 8 | 0xr 8090 |
. . . . 5
| |
| 9 | renemnf 8092 |
. . . . . 6
| |
| 10 | 2, 9 | ax-mp 5 |
. . . . 5
|
| 11 | xaddpnf2 9939 |
. . . . 5
| |
| 12 | 8, 10, 11 | mp2an 426 |
. . . 4
|
| 13 | oveq1 5932 |
. . . 4
| |
| 14 | id 19 |
. . . 4
| |
| 15 | 12, 13, 14 | 3eqtr4a 2255 |
. . 3
|
| 16 | renepnf 8091 |
. . . . . 6
| |
| 17 | 2, 16 | ax-mp 5 |
. . . . 5
|
| 18 | xaddmnf2 9941 |
. . . . 5
| |
| 19 | 8, 17, 18 | mp2an 426 |
. . . 4
|
| 20 | oveq1 5932 |
. . . 4
| |
| 21 | id 19 |
. . . 4
| |
| 22 | 19, 20, 21 | 3eqtr4a 2255 |
. . 3
|
| 23 | 7, 15, 22 | 3jaoi 1314 |
. 2
|
| 24 | 1, 23 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 ax-0id 8004 ax-rnegex 8005 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-xadd 9865 |
| This theorem is referenced by: xaddid2 9955 xaddid1d 9956 xnn0xadd0 9959 xpncan 9963 psmetsym 14649 psmetge0 14651 xmetge0 14685 xmetsym 14688 |
| Copyright terms: Public domain | W3C validator |