Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddid1 | Unicode version |
Description: Extended real version of addid1 8007. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddid1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 9676 | . 2 | |
2 | 0re 7872 | . . . . 5 | |
3 | rexadd 9749 | . . . . 5 | |
4 | 2, 3 | mpan2 422 | . . . 4 |
5 | recn 7859 | . . . . 5 | |
6 | 5 | addid1d 8018 | . . . 4 |
7 | 4, 6 | eqtrd 2190 | . . 3 |
8 | 0xr 7918 | . . . . 5 | |
9 | renemnf 7920 | . . . . . 6 | |
10 | 2, 9 | ax-mp 5 | . . . . 5 |
11 | xaddpnf2 9744 | . . . . 5 | |
12 | 8, 10, 11 | mp2an 423 | . . . 4 |
13 | oveq1 5828 | . . . 4 | |
14 | id 19 | . . . 4 | |
15 | 12, 13, 14 | 3eqtr4a 2216 | . . 3 |
16 | renepnf 7919 | . . . . . 6 | |
17 | 2, 16 | ax-mp 5 | . . . . 5 |
18 | xaddmnf2 9746 | . . . . 5 | |
19 | 8, 17, 18 | mp2an 423 | . . . 4 |
20 | oveq1 5828 | . . . 4 | |
21 | id 19 | . . . 4 | |
22 | 19, 20, 21 | 3eqtr4a 2216 | . . 3 |
23 | 7, 15, 22 | 3jaoi 1285 | . 2 |
24 | 1, 23 | sylbi 120 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3o 962 wceq 1335 wcel 2128 wne 2327 (class class class)co 5821 cr 7725 cc0 7726 caddc 7729 cpnf 7903 cmnf 7904 cxr 7905 cxad 9670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1re 7820 ax-addrcl 7823 ax-0id 7834 ax-rnegex 7835 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-xadd 9673 |
This theorem is referenced by: xaddid2 9760 xaddid1d 9761 xnn0xadd0 9764 xpncan 9768 psmetsym 12700 psmetge0 12702 xmetge0 12736 xmetsym 12739 |
Copyright terms: Public domain | W3C validator |