ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddid1 Unicode version

Theorem xaddid1 9532
Description: Extended real version of addid1 7817. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddid1  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )

Proof of Theorem xaddid1
StepHypRef Expression
1 elxr 9450 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 0re 7684 . . . . 5  |-  0  e.  RR
3 rexadd 9522 . . . . 5  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A +e 0 )  =  ( A  +  0 ) )
42, 3mpan2 419 . . . 4  |-  ( A  e.  RR  ->  ( A +e 0 )  =  ( A  + 
0 ) )
5 recn 7671 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
65addid1d 7828 . . . 4  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
74, 6eqtrd 2145 . . 3  |-  ( A  e.  RR  ->  ( A +e 0 )  =  A )
8 0xr 7730 . . . . 5  |-  0  e.  RR*
9 renemnf 7732 . . . . . 6  |-  ( 0  e.  RR  ->  0  =/= -oo )
102, 9ax-mp 7 . . . . 5  |-  0  =/= -oo
11 xaddpnf2 9517 . . . . 5  |-  ( ( 0  e.  RR*  /\  0  =/= -oo )  ->  ( +oo +e 0 )  = +oo )
128, 10, 11mp2an 420 . . . 4  |-  ( +oo +e 0 )  = +oo
13 oveq1 5733 . . . 4  |-  ( A  = +oo  ->  ( A +e 0 )  =  ( +oo +e 0 ) )
14 id 19 . . . 4  |-  ( A  = +oo  ->  A  = +oo )
1512, 13, 143eqtr4a 2171 . . 3  |-  ( A  = +oo  ->  ( A +e 0 )  =  A )
16 renepnf 7731 . . . . . 6  |-  ( 0  e.  RR  ->  0  =/= +oo )
172, 16ax-mp 7 . . . . 5  |-  0  =/= +oo
18 xaddmnf2 9519 . . . . 5  |-  ( ( 0  e.  RR*  /\  0  =/= +oo )  ->  ( -oo +e 0 )  = -oo )
198, 17, 18mp2an 420 . . . 4  |-  ( -oo +e 0 )  = -oo
20 oveq1 5733 . . . 4  |-  ( A  = -oo  ->  ( A +e 0 )  =  ( -oo +e 0 ) )
21 id 19 . . . 4  |-  ( A  = -oo  ->  A  = -oo )
2219, 20, 213eqtr4a 2171 . . 3  |-  ( A  = -oo  ->  ( A +e 0 )  =  A )
237, 15, 223jaoi 1262 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A +e 0 )  =  A )
241, 23sylbi 120 1  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 942    = wceq 1312    e. wcel 1461    =/= wne 2280  (class class class)co 5726   RRcr 7540   0cc0 7541    + caddc 7544   +oocpnf 7715   -oocmnf 7716   RR*cxr 7717   +ecxad 9444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1re 7633  ax-addrcl 7636  ax-0id 7647  ax-rnegex 7648
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-xadd 9447
This theorem is referenced by:  xaddid2  9533  xaddid1d  9534  xnn0xadd0  9537  xpncan  9541  psmetsym  12312  psmetge0  12314  xmetge0  12348  xmetsym  12351
  Copyright terms: Public domain W3C validator