ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddid1 Unicode version

Theorem xaddid1 9984
Description: Extended real version of addrid 8210. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddid1  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )

Proof of Theorem xaddid1
StepHypRef Expression
1 elxr 9898 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 0re 8072 . . . . 5  |-  0  e.  RR
3 rexadd 9974 . . . . 5  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  ( A +e 0 )  =  ( A  +  0 ) )
42, 3mpan2 425 . . . 4  |-  ( A  e.  RR  ->  ( A +e 0 )  =  ( A  + 
0 ) )
5 recn 8058 . . . . 5  |-  ( A  e.  RR  ->  A  e.  CC )
65addridd 8221 . . . 4  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
74, 6eqtrd 2238 . . 3  |-  ( A  e.  RR  ->  ( A +e 0 )  =  A )
8 0xr 8119 . . . . 5  |-  0  e.  RR*
9 renemnf 8121 . . . . . 6  |-  ( 0  e.  RR  ->  0  =/= -oo )
102, 9ax-mp 5 . . . . 5  |-  0  =/= -oo
11 xaddpnf2 9969 . . . . 5  |-  ( ( 0  e.  RR*  /\  0  =/= -oo )  ->  ( +oo +e 0 )  = +oo )
128, 10, 11mp2an 426 . . . 4  |-  ( +oo +e 0 )  = +oo
13 oveq1 5951 . . . 4  |-  ( A  = +oo  ->  ( A +e 0 )  =  ( +oo +e 0 ) )
14 id 19 . . . 4  |-  ( A  = +oo  ->  A  = +oo )
1512, 13, 143eqtr4a 2264 . . 3  |-  ( A  = +oo  ->  ( A +e 0 )  =  A )
16 renepnf 8120 . . . . . 6  |-  ( 0  e.  RR  ->  0  =/= +oo )
172, 16ax-mp 5 . . . . 5  |-  0  =/= +oo
18 xaddmnf2 9971 . . . . 5  |-  ( ( 0  e.  RR*  /\  0  =/= +oo )  ->  ( -oo +e 0 )  = -oo )
198, 17, 18mp2an 426 . . . 4  |-  ( -oo +e 0 )  = -oo
20 oveq1 5951 . . . 4  |-  ( A  = -oo  ->  ( A +e 0 )  =  ( -oo +e 0 ) )
21 id 19 . . . 4  |-  ( A  = -oo  ->  A  = -oo )
2219, 20, 213eqtr4a 2264 . . 3  |-  ( A  = -oo  ->  ( A +e 0 )  =  A )
237, 15, 223jaoi 1316 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  ->  ( A +e 0 )  =  A )
241, 23sylbi 121 1  |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ w3o 980    = wceq 1373    e. wcel 2176    =/= wne 2376  (class class class)co 5944   RRcr 7924   0cc0 7925    + caddc 7928   +oocpnf 8104   -oocmnf 8105   RR*cxr 8106   +ecxad 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022  ax-0id 8033  ax-rnegex 8034
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-xadd 9895
This theorem is referenced by:  xaddid2  9985  xaddid1d  9986  xnn0xadd0  9989  xpncan  9993  psmetsym  14801  psmetge0  14803  xmetge0  14837  xmetsym  14840
  Copyright terms: Public domain W3C validator