| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmnfdc | Unicode version | ||
| Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmnfdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9897 |
. 2
| |
| 2 | renemnf 8120 |
. . . . . 6
| |
| 3 | 2 | neneqd 2396 |
. . . . 5
|
| 4 | 3 | olcd 735 |
. . . 4
|
| 5 | df-dc 836 |
. . . 4
| |
| 6 | 4, 5 | sylibr 134 |
. . 3
|
| 7 | pnfnemnf 8126 |
. . . . . . 7
| |
| 8 | 7 | neii 2377 |
. . . . . 6
|
| 9 | eqeq1 2211 |
. . . . . 6
| |
| 10 | 8, 9 | mtbiri 676 |
. . . . 5
|
| 11 | 10 | olcd 735 |
. . . 4
|
| 12 | 11, 5 | sylibr 134 |
. . 3
|
| 13 | orc 713 |
. . . 4
| |
| 14 | 13, 5 | sylibr 134 |
. . 3
|
| 15 | 6, 12, 14 | 3jaoi 1315 |
. 2
|
| 16 | 1, 15 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-pnf 8108 df-mnf 8109 df-xr 8110 |
| This theorem is referenced by: xaddf 9965 xaddval 9966 xaddmnf1 9969 xaddcom 9982 xnegdi 9989 xpncan 9992 xleadd1a 9994 xsubge0 10002 xrmaxiflemcl 11527 xrmaxifle 11528 xrmaxiflemab 11529 xrmaxiflemlub 11530 xrmaxiflemcom 11531 xrmaxadd 11543 |
| Copyright terms: Public domain | W3C validator |