ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmnfdc Unicode version

Theorem xrmnfdc 10035
Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrmnfdc  |-  ( A  e.  RR*  -> DECID  A  = -oo )

Proof of Theorem xrmnfdc
StepHypRef Expression
1 elxr 9968 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renemnf 8191 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= -oo )
32neneqd 2421 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = -oo )
43olcd 739 . . . 4  |-  ( A  e.  RR  ->  ( A  = -oo  \/  -.  A  = -oo )
)
5 df-dc 840 . . . 4  |-  (DECID  A  = -oo  <->  ( A  = -oo  \/  -.  A  = -oo ) )
64, 5sylibr 134 . . 3  |-  ( A  e.  RR  -> DECID  A  = -oo )
7 pnfnemnf 8197 . . . . . . 7  |- +oo  =/= -oo
87neii 2402 . . . . . 6  |-  -. +oo  = -oo
9 eqeq1 2236 . . . . . 6  |-  ( A  = +oo  ->  ( A  = -oo  <-> +oo  = -oo ) )
108, 9mtbiri 679 . . . . 5  |-  ( A  = +oo  ->  -.  A  = -oo )
1110olcd 739 . . . 4  |-  ( A  = +oo  ->  ( A  = -oo  \/  -.  A  = -oo )
)
1211, 5sylibr 134 . . 3  |-  ( A  = +oo  -> DECID  A  = -oo )
13 orc 717 . . . 4  |-  ( A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo )
)
1413, 5sylibr 134 . . 3  |-  ( A  = -oo  -> DECID  A  = -oo )
156, 12, 143jaoi 1337 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = -oo )
161, 15sylbi 121 1  |-  ( A  e.  RR*  -> DECID  A  = -oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 713  DECID wdc 839    \/ w3o 1001    = wceq 1395    e. wcel 2200   RRcr 7994   +oocpnf 8174   -oocmnf 8175   RR*cxr 8176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-pnf 8179  df-mnf 8180  df-xr 8181
This theorem is referenced by:  xaddf  10036  xaddval  10037  xaddmnf1  10040  xaddcom  10053  xnegdi  10060  xpncan  10063  xleadd1a  10065  xsubge0  10073  xrmaxiflemcl  11751  xrmaxifle  11752  xrmaxiflemab  11753  xrmaxiflemlub  11754  xrmaxiflemcom  11755  xrmaxadd  11767
  Copyright terms: Public domain W3C validator