ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrmnfdc Unicode version

Theorem xrmnfdc 10000
Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
Assertion
Ref Expression
xrmnfdc  |-  ( A  e.  RR*  -> DECID  A  = -oo )

Proof of Theorem xrmnfdc
StepHypRef Expression
1 elxr 9933 . 2  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
2 renemnf 8156 . . . . . 6  |-  ( A  e.  RR  ->  A  =/= -oo )
32neneqd 2399 . . . . 5  |-  ( A  e.  RR  ->  -.  A  = -oo )
43olcd 736 . . . 4  |-  ( A  e.  RR  ->  ( A  = -oo  \/  -.  A  = -oo )
)
5 df-dc 837 . . . 4  |-  (DECID  A  = -oo  <->  ( A  = -oo  \/  -.  A  = -oo ) )
64, 5sylibr 134 . . 3  |-  ( A  e.  RR  -> DECID  A  = -oo )
7 pnfnemnf 8162 . . . . . . 7  |- +oo  =/= -oo
87neii 2380 . . . . . 6  |-  -. +oo  = -oo
9 eqeq1 2214 . . . . . 6  |-  ( A  = +oo  ->  ( A  = -oo  <-> +oo  = -oo ) )
108, 9mtbiri 677 . . . . 5  |-  ( A  = +oo  ->  -.  A  = -oo )
1110olcd 736 . . . 4  |-  ( A  = +oo  ->  ( A  = -oo  \/  -.  A  = -oo )
)
1211, 5sylibr 134 . . 3  |-  ( A  = +oo  -> DECID  A  = -oo )
13 orc 714 . . . 4  |-  ( A  = -oo  ->  ( A  = -oo  \/  -.  A  = -oo )
)
1413, 5sylibr 134 . . 3  |-  ( A  = -oo  -> DECID  A  = -oo )
156, 12, 143jaoi 1316 . 2  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  -> DECID  A  = -oo )
161, 15sylbi 121 1  |-  ( A  e.  RR*  -> DECID  A  = -oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    \/ w3o 980    = wceq 1373    e. wcel 2178   RRcr 7959   +oocpnf 8139   -oocmnf 8140   RR*cxr 8141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-pnf 8144  df-mnf 8145  df-xr 8146
This theorem is referenced by:  xaddf  10001  xaddval  10002  xaddmnf1  10005  xaddcom  10018  xnegdi  10025  xpncan  10028  xleadd1a  10030  xsubge0  10038  xrmaxiflemcl  11671  xrmaxifle  11672  xrmaxiflemab  11673  xrmaxiflemlub  11674  xrmaxiflemcom  11675  xrmaxadd  11687
  Copyright terms: Public domain W3C validator