| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xrmnfdc | Unicode version | ||
| Description: An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.) |
| Ref | Expression |
|---|---|
| xrmnfdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxr 9933 |
. 2
| |
| 2 | renemnf 8156 |
. . . . . 6
| |
| 3 | 2 | neneqd 2399 |
. . . . 5
|
| 4 | 3 | olcd 736 |
. . . 4
|
| 5 | df-dc 837 |
. . . 4
| |
| 6 | 4, 5 | sylibr 134 |
. . 3
|
| 7 | pnfnemnf 8162 |
. . . . . . 7
| |
| 8 | 7 | neii 2380 |
. . . . . 6
|
| 9 | eqeq1 2214 |
. . . . . 6
| |
| 10 | 8, 9 | mtbiri 677 |
. . . . 5
|
| 11 | 10 | olcd 736 |
. . . 4
|
| 12 | 11, 5 | sylibr 134 |
. . 3
|
| 13 | orc 714 |
. . . 4
| |
| 14 | 13, 5 | sylibr 134 |
. . 3
|
| 15 | 6, 12, 14 | 3jaoi 1316 |
. 2
|
| 16 | 1, 15 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-pnf 8144 df-mnf 8145 df-xr 8146 |
| This theorem is referenced by: xaddf 10001 xaddval 10002 xaddmnf1 10005 xaddcom 10018 xnegdi 10025 xpncan 10028 xleadd1a 10030 xsubge0 10038 xrmaxiflemcl 11671 xrmaxifle 11672 xrmaxiflemab 11673 xrmaxiflemlub 11674 xrmaxiflemcom 11675 xrmaxadd 11687 |
| Copyright terms: Public domain | W3C validator |