| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znegcl | Unicode version | ||
| Description: Closure law for negative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| znegcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elz 9328 |
. 2
| |
| 2 | negeq 8219 |
. . . . . 6
| |
| 3 | neg0 8272 |
. . . . . 6
| |
| 4 | 2, 3 | eqtrdi 2245 |
. . . . 5
|
| 5 | 0z 9337 |
. . . . 5
| |
| 6 | 4, 5 | eqeltrdi 2287 |
. . . 4
|
| 7 | nnnegz 9329 |
. . . 4
| |
| 8 | nnz 9345 |
. . . 4
| |
| 9 | 6, 7, 8 | 3jaoi 1314 |
. . 3
|
| 10 | 9 | adantl 277 |
. 2
|
| 11 | 1, 10 | sylbi 121 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 |
| This theorem is referenced by: znegclb 9359 nn0negz 9360 peano2zm 9364 zsubcl 9367 zeo 9431 zindd 9444 znegcld 9450 uzneg 9620 qnegcl 9710 fzsubel 10135 fzosubel 10270 ceilid 10407 modqcyc2 10452 expsubap 10679 climshft 11469 negdvdsb 11972 dvdsnegb 11973 summodnegmod 11987 dvdssub 12003 odd2np1 12038 gcdneg 12149 neggcd 12150 gcdabs 12155 bezoutlemaz 12170 bezoutlembz 12171 lcmneg 12242 neglcm 12243 lcmabs 12244 4sqexercise1 12567 4sqexercise2 12568 mulgval 13252 mulgaddcomlem 13275 mulgneg2 13286 mulgsubdir 13292 zsubrg 14137 zringmulg 14154 zringinvg 14160 sinperlem 15044 lgsneg 15265 lgsdir2lem4 15272 lgsdir2lem5 15273 ex-fl 15371 |
| Copyright terms: Public domain | W3C validator |