![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4p4e8 | GIF version |
Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p4e8 | ⊢ (4 + 4) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 9011 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 5908 | . . 3 ⊢ (4 + 4) = (4 + (3 + 1)) |
3 | 4cn 9028 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 3cn 9025 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 7935 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7996 | . . 3 ⊢ ((4 + 3) + 1) = (4 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2213 | . 2 ⊢ (4 + 4) = ((4 + 3) + 1) |
8 | df-8 9015 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 4p3e7 9094 | . . . 4 ⊢ (4 + 3) = 7 | |
10 | 9 | oveq1i 5907 | . . 3 ⊢ ((4 + 3) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2213 | . 2 ⊢ 8 = ((4 + 3) + 1) |
12 | 7, 11 | eqtr4i 2213 | 1 ⊢ (4 + 4) = 8 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5897 1c1 7843 + caddc 7845 3c3 9002 4c4 9003 7c7 9006 8c8 9007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-addrcl 7939 ax-addass 7944 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5900 df-2 9009 df-3 9010 df-4 9011 df-5 9012 df-6 9013 df-7 9014 df-8 9015 |
This theorem is referenced by: 4t2e8 9108 |
Copyright terms: Public domain | W3C validator |