Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4p4e8 | GIF version |
Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
4p4e8 | ⊢ (4 + 4) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4 8939 | . . . 4 ⊢ 4 = (3 + 1) | |
2 | 1 | oveq2i 5864 | . . 3 ⊢ (4 + 4) = (4 + (3 + 1)) |
3 | 4cn 8956 | . . . 4 ⊢ 4 ∈ ℂ | |
4 | 3cn 8953 | . . . 4 ⊢ 3 ∈ ℂ | |
5 | ax-1cn 7867 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7928 | . . 3 ⊢ ((4 + 3) + 1) = (4 + (3 + 1)) |
7 | 2, 6 | eqtr4i 2194 | . 2 ⊢ (4 + 4) = ((4 + 3) + 1) |
8 | df-8 8943 | . . 3 ⊢ 8 = (7 + 1) | |
9 | 4p3e7 9022 | . . . 4 ⊢ (4 + 3) = 7 | |
10 | 9 | oveq1i 5863 | . . 3 ⊢ ((4 + 3) + 1) = (7 + 1) |
11 | 8, 10 | eqtr4i 2194 | . 2 ⊢ 8 = ((4 + 3) + 1) |
12 | 7, 11 | eqtr4i 2194 | 1 ⊢ (4 + 4) = 8 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5853 1c1 7775 + caddc 7777 3c3 8930 4c4 8931 7c7 8934 8c8 8935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-addrcl 7871 ax-addass 7876 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-2 8937 df-3 8938 df-4 8939 df-5 8940 df-6 8941 df-7 8942 df-8 8943 |
This theorem is referenced by: 4t2e8 9036 |
Copyright terms: Public domain | W3C validator |