ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4p4e8 GIF version

Theorem 4p4e8 9127
Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.)
Assertion
Ref Expression
4p4e8 (4 + 4) = 8

Proof of Theorem 4p4e8
StepHypRef Expression
1 df-4 9043 . . . 4 4 = (3 + 1)
21oveq2i 5929 . . 3 (4 + 4) = (4 + (3 + 1))
3 4cn 9060 . . . 4 4 ∈ ℂ
4 3cn 9057 . . . 4 3 ∈ ℂ
5 ax-1cn 7965 . . . 4 1 ∈ ℂ
63, 4, 5addassi 8027 . . 3 ((4 + 3) + 1) = (4 + (3 + 1))
72, 6eqtr4i 2217 . 2 (4 + 4) = ((4 + 3) + 1)
8 df-8 9047 . . 3 8 = (7 + 1)
9 4p3e7 9126 . . . 4 (4 + 3) = 7
109oveq1i 5928 . . 3 ((4 + 3) + 1) = (7 + 1)
118, 10eqtr4i 2217 . 2 8 = ((4 + 3) + 1)
127, 11eqtr4i 2217 1 (4 + 4) = 8
Colors of variables: wff set class
Syntax hints:   = wceq 1364  (class class class)co 5918  1c1 7873   + caddc 7875  3c3 9034  4c4 9035  7c7 9038  8c8 9039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-addrcl 7969  ax-addass 7974
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047
This theorem is referenced by:  4t2e8  9140
  Copyright terms: Public domain W3C validator