| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4p4e8 | GIF version | ||
| Description: 4 + 4 = 8. (Contributed by NM, 11-May-2004.) |
| Ref | Expression |
|---|---|
| 4p4e8 | ⊢ (4 + 4) = 8 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-4 9097 | . . . 4 ⊢ 4 = (3 + 1) | |
| 2 | 1 | oveq2i 5955 | . . 3 ⊢ (4 + 4) = (4 + (3 + 1)) |
| 3 | 4cn 9114 | . . . 4 ⊢ 4 ∈ ℂ | |
| 4 | 3cn 9111 | . . . 4 ⊢ 3 ∈ ℂ | |
| 5 | ax-1cn 8018 | . . . 4 ⊢ 1 ∈ ℂ | |
| 6 | 3, 4, 5 | addassi 8080 | . . 3 ⊢ ((4 + 3) + 1) = (4 + (3 + 1)) |
| 7 | 2, 6 | eqtr4i 2229 | . 2 ⊢ (4 + 4) = ((4 + 3) + 1) |
| 8 | df-8 9101 | . . 3 ⊢ 8 = (7 + 1) | |
| 9 | 4p3e7 9181 | . . . 4 ⊢ (4 + 3) = 7 | |
| 10 | 9 | oveq1i 5954 | . . 3 ⊢ ((4 + 3) + 1) = (7 + 1) |
| 11 | 8, 10 | eqtr4i 2229 | . 2 ⊢ 8 = ((4 + 3) + 1) |
| 12 | 7, 11 | eqtr4i 2229 | 1 ⊢ (4 + 4) = 8 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5944 1c1 7926 + caddc 7928 3c3 9088 4c4 9089 7c7 9092 8c8 9093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-addrcl 8022 ax-addass 8027 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-7 9100 df-8 9101 |
| This theorem is referenced by: 4t2e8 9195 |
| Copyright terms: Public domain | W3C validator |