| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad5antr | Unicode version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| ad2ant.1 |
|
| Ref | Expression |
|---|---|
| ad5antr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 |
. . 3
| |
| 2 | 1 | ad4antr 494 |
. 2
|
| 3 | 2 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad6antr 498 difinfinf 7176 ctssdclemn0 7185 cauappcvgprlemladdfu 7738 caucvgprlemloc 7759 caucvgprlemladdfu 7761 caucvgprlemlim 7765 caucvgprprlemml 7778 caucvgprprlemloc 7787 caucvgprprlemlim 7795 suplocexprlemmu 7802 suplocexprlemru 7803 suplocexprlemloc 7805 suplocsrlem 7892 axcaucvglemres 7983 nn0ltexp2 10818 resqrexlemglsq 11204 xrmaxifle 11428 xrmaxiflemlub 11430 divalglemeuneg 12105 bezoutlemnewy 12188 4sqlemsdc 12594 ctiunctlemfo 12681 mhmmnd 13322 txmetcnp 14838 mulcncf 14928 suplociccreex 14944 cnplimclemr 14989 limccnpcntop 14995 lgsval 15329 |
| Copyright terms: Public domain | W3C validator |