| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ad5antr | Unicode version | ||
| Description: Deduction adding 5 conjuncts to antecedent. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| ad2ant.1 |
|
| Ref | Expression |
|---|---|
| ad5antr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ad2ant.1 |
. . 3
| |
| 2 | 1 | ad4antr 494 |
. 2
|
| 3 | 2 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: ad6antr 498 difinfinf 7202 ctssdclemn0 7211 cauappcvgprlemladdfu 7766 caucvgprlemloc 7787 caucvgprlemladdfu 7789 caucvgprlemlim 7793 caucvgprprlemml 7806 caucvgprprlemloc 7815 caucvgprprlemlim 7823 suplocexprlemmu 7830 suplocexprlemru 7831 suplocexprlemloc 7833 suplocsrlem 7920 axcaucvglemres 8011 nn0ltexp2 10852 resqrexlemglsq 11304 xrmaxifle 11528 xrmaxiflemlub 11530 divalglemeuneg 12205 bezoutlemnewy 12288 4sqlemsdc 12694 ctiunctlemfo 12781 mhmmnd 13423 txmetcnp 14961 mulcncf 15051 suplociccreex 15067 cnplimclemr 15112 limccnpcntop 15118 lgsval 15452 |
| Copyright terms: Public domain | W3C validator |