ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cauappcvgprlemladdfu Unicode version

Theorem cauappcvgprlemladdfu 7486
Description: Lemma for cauappcvgprlemladd 7490. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
Hypotheses
Ref Expression
cauappcvgpr.f  |-  ( ph  ->  F : Q. --> Q. )
cauappcvgpr.app  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
cauappcvgpr.bnd  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
cauappcvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
cauappcvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
cauappcvgprlemladdfu  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
Distinct variable groups:    A, p    L, p, q    ph, p, q    F, l, u, p, q    S, l, q, u
Allowed substitution hints:    ph( u, l)    A( u, q, l)    S( p)    L( u, l)

Proof of Theorem cauappcvgprlemladdfu
Dummy variables  f  g  h  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cauappcvgpr.f . . . . . . 7  |-  ( ph  ->  F : Q. --> Q. )
2 cauappcvgpr.app . . . . . . 7  |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
( F `  p
)  <Q  ( ( F `
 q )  +Q  ( p  +Q  q
) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  (
p  +Q  q ) ) ) )
3 cauappcvgpr.bnd . . . . . . 7  |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )
4 cauappcvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >.
51, 2, 3, 4cauappcvgprlemcl 7485 . . . . . 6  |-  ( ph  ->  L  e.  P. )
6 cauappcvgprlemladd.s . . . . . . 7  |-  ( ph  ->  S  e.  Q. )
7 nqprlu 7379 . . . . . . 7  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
86, 7syl 14 . . . . . 6  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
9 df-iplp 7300 . . . . . . 7  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
10 addclnq 7207 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
119, 10genpelvu 7345 . . . . . 6  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  L ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
125, 8, 11syl2anc 409 . . . . 5  |-  ( ph  ->  ( r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  L ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
1312biimpa 294 . . . 4  |-  ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  E. s  e.  ( 2nd `  L
) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) r  =  ( s  +Q  t ) )
14 breq2 3941 . . . . . . . . . . . . . . . 16  |-  ( u  =  s  ->  (
( ( F `  q )  +Q  q
)  <Q  u  <->  ( ( F `  q )  +Q  q )  <Q  s
) )
1514rexbidv 2439 . . . . . . . . . . . . . . 15  |-  ( u  =  s  ->  ( E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u  <->  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
) )
164fveq2i 5432 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u } >. )
17 nqex 7195 . . . . . . . . . . . . . . . . . 18  |-  Q.  e.  _V
1817rabex 4080 . . . . . . . . . . . . . . . . 17  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( F `  q
) }  e.  _V
1917rabex 4080 . . . . . . . . . . . . . . . . 17  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u }  e.  _V
2018, 19op2nd 6053 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
2116, 20eqtri 2161 . . . . . . . . . . . . . . 15  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  u }
2215, 21elrab2 2847 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
) )
2322biimpi 119 . . . . . . . . . . . . 13  |-  ( s  e.  ( 2nd `  L
)  ->  ( s  e.  Q.  /\  E. q  e.  Q.  ( ( F `
 q )  +Q  q )  <Q  s
) )
2423adantr 274 . . . . . . . . . . . 12  |-  ( ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  ->  (
s  e.  Q.  /\  E. q  e.  Q.  (
( F `  q
)  +Q  q ) 
<Q  s ) )
2524adantl 275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
( s  e.  Q.  /\ 
E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  s ) )
2625adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  e.  Q.  /\ 
E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  s ) )
2726simpld 111 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
s  e.  Q. )
28 vex 2692 . . . . . . . . . . . . . 14  |-  t  e. 
_V
29 breq2 3941 . . . . . . . . . . . . . 14  |-  ( u  =  t  ->  ( S  <Q  u  <->  S  <Q  t ) )
30 ltnqex 7381 . . . . . . . . . . . . . . 15  |-  { l  |  l  <Q  S }  e.  _V
31 gtnqex 7382 . . . . . . . . . . . . . . 15  |-  { u  |  S  <Q  u }  e.  _V
3230, 31op2nd 6053 . . . . . . . . . . . . . 14  |-  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  { u  |  S  <Q  u }
3328, 29, 32elab2 2836 . . . . . . . . . . . . 13  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  <->  S  <Q  t )
34 ltrelnq 7197 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
3534brel 4599 . . . . . . . . . . . . 13  |-  ( S 
<Q  t  ->  ( S  e.  Q.  /\  t  e.  Q. ) )
3633, 35sylbi 120 . . . . . . . . . . . 12  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  ( S  e.  Q.  /\  t  e. 
Q. ) )
3736simprd 113 . . . . . . . . . . 11  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  t  e.  Q. )
3837ad2antll 483 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
t  e.  Q. )
3938adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
t  e.  Q. )
40 addclnq 7207 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  t  e.  Q. )  ->  ( s  +Q  t
)  e.  Q. )
4127, 39, 40syl2anc 409 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  +Q  t
)  e.  Q. )
42 eleq1 2203 . . . . . . . . 9  |-  ( r  =  ( s  +Q  t )  ->  (
r  e.  Q.  <->  ( s  +Q  t )  e.  Q. ) )
4342adantl 275 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( r  e.  Q.  <->  ( s  +Q  t )  e.  Q. ) )
4441, 43mpbird 166 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  Q. )
4526simprd 113 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. q  e.  Q.  ( ( F `  q )  +Q  q
)  <Q  s )
4633biimpi 119 . . . . . . . . . . . . . . . 16  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  S  <Q  t )
4746ad2antll 483 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  ->  S  <Q  t )
4847adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  S  <Q  t )
4948ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  ->  S  <Q  t )
506ad5antr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  ->  S  e.  Q. )
5139ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
t  e.  Q. )
521ad5antr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  ->  F : Q. --> Q. )
53 simplr 520 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
q  e.  Q. )
5452, 53ffvelrnd 5564 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( F `  q
)  e.  Q. )
55 addclnq 7207 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  q
)  e.  Q.  /\  q  e.  Q. )  ->  ( ( F `  q )  +Q  q
)  e.  Q. )
5654, 53, 55syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( F `  q )  +Q  q
)  e.  Q. )
57 ltanqg 7232 . . . . . . . . . . . . . 14  |-  ( ( S  e.  Q.  /\  t  e.  Q.  /\  (
( F `  q
)  +Q  q )  e.  Q. )  -> 
( S  <Q  t  <->  ( ( ( F `  q )  +Q  q
)  +Q  S ) 
<Q  ( ( ( F `
 q )  +Q  q )  +Q  t
) ) )
5850, 51, 56, 57syl3anc 1217 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( S  <Q  t  <->  ( ( ( F `  q )  +Q  q
)  +Q  S ) 
<Q  ( ( ( F `
 q )  +Q  q )  +Q  t
) ) )
5949, 58mpbid 146 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  ( ( ( F `  q )  +Q  q )  +Q  t ) )
60 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( F `  q )  +Q  q
)  <Q  s )
61 ltanqg 7232 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
6261adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  /\  ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )
)  ->  ( f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
6327ad2antrr 480 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
s  e.  Q. )
64 addcomnqg 7213 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
6564adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  /\  ( f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
6662, 56, 63, 51, 65caovord2d 5948 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  <Q  s  <->  ( ( ( F `  q )  +Q  q
)  +Q  t ) 
<Q  ( s  +Q  t
) ) )
6760, 66mpbid 146 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  +Q  t
)  <Q  ( s  +Q  t ) )
68 ltsonq 7230 . . . . . . . . . . . . 13  |-  <Q  Or  Q.
6968, 34sotri 4942 . . . . . . . . . . . 12  |-  ( ( ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  ( ( ( F `  q )  +Q  q )  +Q  t )  /\  (
( ( F `  q )  +Q  q
)  +Q  t ) 
<Q  ( s  +Q  t
) )  ->  (
( ( F `  q )  +Q  q
)  +Q  S ) 
<Q  ( s  +Q  t
) )
7059, 67, 69syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  ( s  +Q  t ) )
71 simpllr 524 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
r  =  ( s  +Q  t ) )
7270, 71breqtrrd 3964 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  /\  ( ( F `  q )  +Q  q
)  <Q  s )  -> 
( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r )
7372ex 114 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  /\  q  e.  Q. )  ->  ( ( ( F `
 q )  +Q  q )  <Q  s  ->  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r ) )
7473reximdva 2537 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( E. q  e. 
Q.  ( ( F `
 q )  +Q  q )  <Q  s  ->  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r ) )
7545, 74mpd 13 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r )
76 breq2 3941 . . . . . . . . 9  |-  ( u  =  r  ->  (
( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u  <->  ( (
( F `  q
)  +Q  q )  +Q  S )  <Q 
r ) )
7776rexbidv 2439 . . . . . . . 8  |-  ( u  =  r  ->  ( E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u  <->  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  r
) )
7817rabex 4080 . . . . . . . . 9  |-  { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) }  e.  _V
7917rabex 4080 . . . . . . . . 9  |-  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u }  e.  _V
8078, 79op2nd 6053 . . . . . . . 8  |-  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. )  =  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u }
8177, 80elrab2 2847 . . . . . . 7  |-  ( r  e.  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. )  <-> 
( r  e.  Q.  /\ 
E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  r ) )
8244, 75, 81sylanbrc 414 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) )
8382ex 114 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
( r  =  ( s  +Q  t )  ->  r  e.  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) )
8483rexlimdvva 2560 . . . 4  |-  ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  ( E. s  e.  ( 2nd `  L ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t )  -> 
r  e.  ( 2nd `  <. { l  e. 
Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  (
( F `  q
)  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `  q )  +Q  q )  +Q  S )  <Q  u } >. ) ) )
8513, 84mpd 13 . . 3  |-  ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  r  e.  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
8685ex 114 . 2  |-  ( ph  ->  ( r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  ->  r  e.  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  (
l  +Q  q ) 
<Q  ( ( F `  q )  +Q  S
) } ,  {
u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) ) )
8786ssrdv 3108 1  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  ( 2nd ` 
<. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
)  <Q  ( ( F `
 q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
 q )  +Q  q )  +Q  S
)  <Q  u } >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418   {crab 2421    C_ wss 3076   <.cop 3535   class class class wbr 3937   -->wf 5127   ` cfv 5131  (class class class)co 5782   2ndc2nd 6045   Q.cnq 7112    +Q cplq 7114    <Q cltq 7117   P.cnp 7123    +P. cpp 7125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-iplp 7300
This theorem is referenced by:  cauappcvgprlemladdrl  7489  cauappcvgprlemladd  7490
  Copyright terms: Public domain W3C validator