ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlim Unicode version

Theorem caucvgprprlemlim 7673
Description: Lemma for caucvgprpr 7674. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemlim  |-  ( ph  ->  A. x  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) ) )
Distinct variable groups:    A, m    m, F    A, r, j    u, F, r, l, k, n    ph, k, r    k, L   
j, k, ph, x    k, l, u, p, q, r    j, r, x   
q, l, r    u, p, q, r    m, r   
k, n, u, l   
j, l, u    n, r
Allowed substitution hints:    ph( u, m, n, q, p, l)    A( x, u, k, n, q, p, l)    F( x, j, q, p)    L( x, u, j, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemlim
StepHypRef Expression
1 archrecpr 7626 . . . 4  |-  ( x  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )
21adantl 275 . . 3  |-  ( (
ph  /\  x  e.  P. )  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )
3 caucvgprpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> P. )
43ad5antr 493 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  F : N. --> P. )
5 caucvgprpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
65ad5antr 493 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <P 
( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
7 caucvgprpr.bnd . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
87ad5antr 493 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  A. m  e.  N.  A  <P  ( F `  m )
)
9 caucvgprpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
10 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  P. )  ->  x  e. 
P. )
1110ad4antr 491 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  x  e.  P. )
12 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  j  <N  k )
13 simpllr 529 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )
144, 6, 8, 9, 11, 12, 13caucvgprprlem1 7671 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  ( F `  k )  <P  ( L  +P.  x
) )
154, 6, 8, 9, 11, 12, 13caucvgprprlem2 7672 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  L  <P  ( ( F `  k )  +P.  x
) )
1614, 15jca 304 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) )
1716ex 114 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )  /\  k  e.  N. )  ->  ( j  <N  k  ->  ( ( F `  k )  <P  ( L  +P.  x )  /\  L  <P  ( ( F `
 k )  +P.  x ) ) ) )
1817ralrimiva 2543 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )  ->  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L  +P.  x )  /\  L  <P  ( ( F `
 k )  +P.  x ) ) ) )
1918ex 114 . . . 4  |-  ( ( ( ph  /\  x  e.  P. )  /\  j  e.  N. )  ->  ( <. { l  |  l 
<Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x  ->  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L  +P.  x )  /\  L  <P  ( ( F `
 k )  +P.  x ) ) ) ) )
2019reximdva 2572 . . 3  |-  ( (
ph  /\  x  e.  P. )  ->  ( E. j  e.  N.  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) ) ) )
212, 20mpd 13 . 2  |-  ( (
ph  /\  x  e.  P. )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <P  ( L  +P.  x
)  /\  L  <P  ( ( F `  k
)  +P.  x )
) ) )
2221ralrimiva 2543 1  |-  ( ph  ->  A. x  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   {crab 2452   <.cop 3586   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853   1oc1o 6388   [cec 6511   N.cnpi 7234    <N clti 7237    ~Q ceq 7241   Q.cnq 7242    +Q cplq 7244   *Qcrq 7246    <Q cltq 7247   P.cnp 7253    +P. cpp 7255    <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432
This theorem is referenced by:  caucvgprpr  7674
  Copyright terms: Public domain W3C validator