ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemlim Unicode version

Theorem caucvgprprlemlim 7660
Description: Lemma for caucvgprpr 7661. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemlim  |-  ( ph  ->  A. x  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) ) )
Distinct variable groups:    A, m    m, F    A, r, j    u, F, r, l, k, n    ph, k, r    k, L   
j, k, ph, x    k, l, u, p, q, r    j, r, x   
q, l, r    u, p, q, r    m, r   
k, n, u, l   
j, l, u    n, r
Allowed substitution hints:    ph( u, m, n, q, p, l)    A( x, u, k, n, q, p, l)    F( x, j, q, p)    L( x, u, j, m, n, r, q, p, l)

Proof of Theorem caucvgprprlemlim
StepHypRef Expression
1 archrecpr 7613 . . . 4  |-  ( x  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )
21adantl 275 . . 3  |-  ( (
ph  /\  x  e.  P. )  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )
3 caucvgprpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> P. )
43ad5antr 493 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  F : N. --> P. )
5 caucvgprpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
65ad5antr 493 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <P 
( ( F `  k )  +P.  <. { l  |  l  <Q 
( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
7 caucvgprpr.bnd . . . . . . . . . 10  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
87ad5antr 493 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  A. m  e.  N.  A  <P  ( F `  m )
)
9 caucvgprpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
10 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  P. )  ->  x  e. 
P. )
1110ad4antr 491 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  x  e.  P. )
12 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  j  <N  k )
13 simpllr 529 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )
144, 6, 8, 9, 11, 12, 13caucvgprprlem1 7658 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  ( F `  k )  <P  ( L  +P.  x
) )
154, 6, 8, 9, 11, 12, 13caucvgprprlem2 7659 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  L  <P  ( ( F `  k )  +P.  x
) )
1614, 15jca 304 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x
)  /\  k  e.  N. )  /\  j  <N  k )  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) )
1716ex 114 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )  /\  k  e.  N. )  ->  ( j  <N  k  ->  ( ( F `  k )  <P  ( L  +P.  x )  /\  L  <P  ( ( F `
 k )  +P.  x ) ) ) )
1817ralrimiva 2543 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  P. )  /\  j  e.  N. )  /\  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x )  ->  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L  +P.  x )  /\  L  <P  ( ( F `
 k )  +P.  x ) ) ) )
1918ex 114 . . . 4  |-  ( ( ( ph  /\  x  e.  P. )  /\  j  e.  N. )  ->  ( <. { l  |  l 
<Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x  ->  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L  +P.  x )  /\  L  <P  ( ( F `
 k )  +P.  x ) ) ) ) )
2019reximdva 2572 . . 3  |-  ( (
ph  /\  x  e.  P. )  ->  ( E. j  e.  N.  <. { l  |  l  <Q 
( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  x  ->  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) ) ) )
212, 20mpd 13 . 2  |-  ( (
ph  /\  x  e.  P. )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( ( F `  k )  <P  ( L  +P.  x
)  /\  L  <P  ( ( F `  k
)  +P.  x )
) ) )
2221ralrimiva 2543 1  |-  ( ph  ->  A. x  e.  P.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  (
( F `  k
)  <P  ( L  +P.  x )  /\  L  <P  ( ( F `  k )  +P.  x
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   {crab 2452   <.cop 3584   class class class wbr 3987   -->wf 5192   ` cfv 5196  (class class class)co 5850   1oc1o 6385   [cec 6507   N.cnpi 7221    <N clti 7224    ~Q ceq 7228   Q.cnq 7229    +Q cplq 7231   *Qcrq 7233    <Q cltq 7234   P.cnp 7240    +P. cpp 7242    <P cltp 7244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-eprel 4272  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-irdg 6346  df-1o 6392  df-2o 6393  df-oadd 6396  df-omul 6397  df-er 6509  df-ec 6511  df-qs 6515  df-ni 7253  df-pli 7254  df-mi 7255  df-lti 7256  df-plpq 7293  df-mpq 7294  df-enq 7296  df-nqqs 7297  df-plqqs 7298  df-mqqs 7299  df-1nqqs 7300  df-rq 7301  df-ltnqqs 7302  df-enq0 7373  df-nq0 7374  df-0nq0 7375  df-plq0 7376  df-mq0 7377  df-inp 7415  df-iplp 7417  df-iltp 7419
This theorem is referenced by:  caucvgprpr  7661
  Copyright terms: Public domain W3C validator