ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemml Unicode version

Theorem caucvgprprlemml 7614
Description: Lemma for caucvgprpr 7632. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemml  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
Distinct variable groups:    A, m    m, F    A, r, m    A, s, r    F, l    p, l, q, r, s    u, l    ph, r, s
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, k, n, q, p, l)    F( u, k, n, s, r, q, p)    L( u, k, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemml
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 5468 . . . . . 6  |-  ( m  =  1o  ->  ( F `  m )  =  ( F `  1o ) )
21breq2d 3977 . . . . 5  |-  ( m  =  1o  ->  ( A  <P  ( F `  m )  <->  A  <P  ( F `  1o ) ) )
3 caucvgprpr.bnd . . . . 5  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
4 1pi 7235 . . . . . 6  |-  1o  e.  N.
54a1i 9 . . . . 5  |-  ( ph  ->  1o  e.  N. )
62, 3, 5rspcdva 2821 . . . 4  |-  ( ph  ->  A  <P  ( F `  1o ) )
7 ltrelpr 7425 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
87brel 4638 . . . . 5  |-  ( A 
<P  ( F `  1o )  ->  ( A  e. 
P.  /\  ( F `  1o )  e.  P. ) )
98simpld 111 . . . 4  |-  ( A 
<P  ( F `  1o )  ->  A  e.  P. )
106, 9syl 14 . . 3  |-  ( ph  ->  A  e.  P. )
11 prop 7395 . . . 4  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
12 prml 7397 . . . 4  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
1311, 12syl 14 . . 3  |-  ( A  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
1410, 13syl 14 . 2  |-  ( ph  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
15 subhalfnqq 7334 . . . 4  |-  ( x  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  <Q  x
)
1615ad2antrl 482 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  ->  E. s  e.  Q.  ( s  +Q  s
)  <Q  x )
17 simplr 520 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  s  e.  Q. )
18 archrecnq 7583 . . . . . . . 8  |-  ( s  e.  Q.  ->  E. r  e.  N.  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s )
1917, 18syl 14 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  E. r  e.  N.  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s )
20 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s )
21 simplr 520 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  r  e.  N. )
22 nnnq 7342 . . . . . . . . . . . . . . . 16  |-  ( r  e.  N.  ->  [ <. r ,  1o >. ]  ~Q  e.  Q. )
23 recclnq 7312 . . . . . . . . . . . . . . . 16  |-  ( [
<. r ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e.  Q. )
2421, 22, 233syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e. 
Q. )
2517ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  s  e.  Q. )
26 ltanqg 7320 . . . . . . . . . . . . . . 15  |-  ( ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q.  /\  s  e.  Q. )  ->  ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) ) )
2724, 25, 25, 26syl3anc 1220 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) ) )
2820, 27mpbid 146 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) )
29 simpllr 524 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  s )  <Q  x
)
30 ltsonq 7318 . . . . . . . . . . . . . 14  |-  <Q  Or  Q.
31 ltrelnq 7285 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
3230, 31sotri 4981 . . . . . . . . . . . . 13  |-  ( ( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  ( s  +Q  s )  /\  (
s  +Q  s ) 
<Q  x )  ->  (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  <Q  x )
3328, 29, 32syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  x )
3410ad5antr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  A  e.  P. )
35 simprr 522 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  ->  x  e.  ( 1st `  A ) )
3635ad4antr 486 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  x  e.  ( 1st `  A ) )
37 prcdnql 7404 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  -> 
( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  x  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
) ) )
3811, 37sylan 281 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  -> 
( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  x  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
) ) )
3934, 36, 38syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  <Q  x  ->  (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  e.  ( 1st `  A ) ) )
4033, 39mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
) )
41 addclnq 7295 . . . . . . . . . . . . 13  |-  ( ( s  e.  Q.  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  e.  Q. )
4225, 24, 41syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e. 
Q. )
43 nqprl 7471 . . . . . . . . . . . 12  |-  ( ( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  e.  Q.  /\  A  e.  P. )  ->  ( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
)  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P  A ) )
4442, 34, 43syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  e.  ( 1st `  A )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  A ) )
4540, 44mpbid 146 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  A )
46 fveq2 5468 . . . . . . . . . . . 12  |-  ( m  =  r  ->  ( F `  m )  =  ( F `  r ) )
4746breq2d 3977 . . . . . . . . . . 11  |-  ( m  =  r  ->  ( A  <P  ( F `  m )  <->  A  <P  ( F `  r ) ) )
483ad5antr 488 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  A. m  e.  N.  A  <P  ( F `  m )
)
4947, 48, 21rspcdva 2821 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  A  <P  ( F `  r ) )
50 ltsopr 7516 . . . . . . . . . . 11  |-  <P  Or  P.
5150, 7sotri 4981 . . . . . . . . . 10  |-  ( (
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  A  /\  A  <P  ( F `  r ) )  ->  <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
)
5245, 49, 51syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r )
)
5352ex 114 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  /\  r  e.  N. )  ->  ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r )
) )
5453reximdva 2559 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  ( E. r  e.  N.  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s  ->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
5519, 54mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) )
56 oveq1 5831 . . . . . . . . . . . 12  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) )
5756breq2d 3977 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) ) )
5857abbidv 2275 . . . . . . . . . 10  |-  ( l  =  s  ->  { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } )
5956breq1d 3975 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q ) )
6059abbidv 2275 . . . . . . . . . 10  |-  ( l  =  s  ->  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } )
6158, 60opeq12d 3749 . . . . . . . . 9  |-  ( l  =  s  ->  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
6261breq1d 3975 . . . . . . . 8  |-  ( l  =  s  ->  ( <. { p  |  p 
<Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
6362rexbidv 2458 . . . . . . 7  |-  ( l  =  s  ->  ( E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
64 caucvgprpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
6564fveq2i 5471 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
66 nqex 7283 . . . . . . . . . 10  |-  Q.  e.  _V
6766rabex 4108 . . . . . . . . 9  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
6866rabex 4108 . . . . . . . . 9  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
6967, 68op1st 6094 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
7065, 69eqtri 2178 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
7163, 70elrab2 2871 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
7217, 55, 71sylanbrc 414 . . . . 5  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  s  e.  ( 1st `  L ) )
7372ex 114 . . . 4  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  <Q  x  ->  s  e.  ( 1st `  L ) ) )
7473reximdva 2559 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  -> 
( E. s  e. 
Q.  ( s  +Q  s )  <Q  x  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
7516, 74mpd 13 . 2  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
7614, 75rexlimddv 2579 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   {cab 2143   A.wral 2435   E.wrex 2436   {crab 2439   <.cop 3563   class class class wbr 3965   -->wf 5166   ` cfv 5170  (class class class)co 5824   1stc1st 6086   2ndc2nd 6087   1oc1o 6356   [cec 6478   N.cnpi 7192    <N clti 7195    ~Q ceq 7199   Q.cnq 7200    +Q cplq 7202   *Qcrq 7204    <Q cltq 7205   P.cnp 7211    +P. cpp 7213    <P cltp 7215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-eprel 4249  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-1o 6363  df-oadd 6367  df-omul 6368  df-er 6480  df-ec 6482  df-qs 6486  df-ni 7224  df-pli 7225  df-mi 7226  df-lti 7227  df-plpq 7264  df-mpq 7265  df-enq 7267  df-nqqs 7268  df-plqqs 7269  df-mqqs 7270  df-1nqqs 7271  df-rq 7272  df-ltnqqs 7273  df-inp 7386  df-iltp 7390
This theorem is referenced by:  caucvgprprlemm  7616
  Copyright terms: Public domain W3C validator