ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemml Unicode version

Theorem caucvgprprlemml 7789
Description: Lemma for caucvgprpr 7807. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
Hypotheses
Ref Expression
caucvgprpr.f  |-  ( ph  ->  F : N. --> P. )
caucvgprpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <P  ( ( F `
 k )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  k
)  <P  ( ( F `
 n )  +P. 
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. )
) ) )
caucvgprpr.bnd  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
caucvgprpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
Assertion
Ref Expression
caucvgprprlemml  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
Distinct variable groups:    A, m    m, F    A, r, m    A, s, r    F, l    p, l, q, r, s    u, l    ph, r, s
Allowed substitution hints:    ph( u, k, m, n, q, p, l)    A( u, k, n, q, p, l)    F( u, k, n, s, r, q, p)    L( u, k, m, n, s, r, q, p, l)

Proof of Theorem caucvgprprlemml
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fveq2 5570 . . . . . 6  |-  ( m  =  1o  ->  ( F `  m )  =  ( F `  1o ) )
21breq2d 4055 . . . . 5  |-  ( m  =  1o  ->  ( A  <P  ( F `  m )  <->  A  <P  ( F `  1o ) ) )
3 caucvgprpr.bnd . . . . 5  |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )
4 1pi 7410 . . . . . 6  |-  1o  e.  N.
54a1i 9 . . . . 5  |-  ( ph  ->  1o  e.  N. )
62, 3, 5rspcdva 2881 . . . 4  |-  ( ph  ->  A  <P  ( F `  1o ) )
7 ltrelpr 7600 . . . . . 6  |-  <P  C_  ( P.  X.  P. )
87brel 4725 . . . . 5  |-  ( A 
<P  ( F `  1o )  ->  ( A  e. 
P.  /\  ( F `  1o )  e.  P. ) )
98simpld 112 . . . 4  |-  ( A 
<P  ( F `  1o )  ->  A  e.  P. )
106, 9syl 14 . . 3  |-  ( ph  ->  A  e.  P. )
11 prop 7570 . . . 4  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
12 prml 7572 . . . 4  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
1311, 12syl 14 . . 3  |-  ( A  e.  P.  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
1410, 13syl 14 . 2  |-  ( ph  ->  E. x  e.  Q.  x  e.  ( 1st `  A ) )
15 subhalfnqq 7509 . . . 4  |-  ( x  e.  Q.  ->  E. s  e.  Q.  ( s  +Q  s )  <Q  x
)
1615ad2antrl 490 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  ->  E. s  e.  Q.  ( s  +Q  s
)  <Q  x )
17 simplr 528 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  s  e.  Q. )
18 archrecnq 7758 . . . . . . . 8  |-  ( s  e.  Q.  ->  E. r  e.  N.  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s )
1917, 18syl 14 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  E. r  e.  N.  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s )
20 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s )
21 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  r  e.  N. )
22 nnnq 7517 . . . . . . . . . . . . . . . 16  |-  ( r  e.  N.  ->  [ <. r ,  1o >. ]  ~Q  e.  Q. )
23 recclnq 7487 . . . . . . . . . . . . . . . 16  |-  ( [
<. r ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e.  Q. )
2421, 22, 233syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e. 
Q. )
2517ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  s  e.  Q. )
26 ltanqg 7495 . . . . . . . . . . . . . . 15  |-  ( ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e.  Q.  /\  s  e.  Q.  /\  s  e.  Q. )  ->  ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
s  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) ) )
2724, 25, 25, 26syl3anc 1249 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) ) )
2820, 27mpbid 147 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
( s  +Q  s
) )
29 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  s )  <Q  x
)
30 ltsonq 7493 . . . . . . . . . . . . . 14  |-  <Q  Or  Q.
31 ltrelnq 7460 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
3230, 31sotri 5075 . . . . . . . . . . . . 13  |-  ( ( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  ( s  +Q  s )  /\  (
s  +Q  s ) 
<Q  x )  ->  (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  <Q  x )
3328, 29, 32syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  x )
3410ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  A  e.  P. )
35 simprr 531 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  ->  x  e.  ( 1st `  A ) )
3635ad4antr 494 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  x  e.  ( 1st `  A ) )
37 prcdnql 7579 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  x  e.  ( 1st `  A ) )  -> 
( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  x  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
) ) )
3811, 37sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  x  e.  ( 1st `  A ) )  -> 
( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  x  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
) ) )
3934, 36, 38syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  <Q  x  ->  (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  e.  ( 1st `  A ) ) )
4033, 39mpd 13 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
) )
41 addclnq 7470 . . . . . . . . . . . . 13  |-  ( ( s  e.  Q.  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  e.  Q. )
4225, 24, 41syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e. 
Q. )
43 nqprl 7646 . . . . . . . . . . . 12  |-  ( ( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  e.  Q.  /\  A  e.  P. )  ->  ( ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  e.  ( 1st `  A
)  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P  A ) )
4442, 34, 43syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  ( (
s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  e.  ( 1st `  A )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  A ) )
4540, 44mpbid 147 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  A )
46 fveq2 5570 . . . . . . . . . . . 12  |-  ( m  =  r  ->  ( F `  m )  =  ( F `  r ) )
4746breq2d 4055 . . . . . . . . . . 11  |-  ( m  =  r  ->  ( A  <P  ( F `  m )  <->  A  <P  ( F `  r ) ) )
483ad5antr 496 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  A. m  e.  N.  A  <P  ( F `  m )
)
4947, 48, 21rspcdva 2881 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  A  <P  ( F `  r ) )
50 ltsopr 7691 . . . . . . . . . . 11  |-  <P  Or  P.
5150, 7sotri 5075 . . . . . . . . . 10  |-  ( (
<. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  A  /\  A  <P  ( F `  r ) )  ->  <. { p  |  p 
<Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
)
5245, 49, 51syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s
)  <Q  x )  /\  r  e.  N. )  /\  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s
)  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r )
)
5352ex 115 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  /\  r  e.  N. )  ->  ( ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s  ->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r )
) )
5453reximdva 2607 . . . . . . 7  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  ( E. r  e.  N.  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  s  ->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
5519, 54mpd 13 . . . . . 6  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) )
56 oveq1 5941 . . . . . . . . . . . 12  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) )
5756breq2d 4055 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <->  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) ) )
5857abbidv 2322 . . . . . . . . . 10  |-  ( l  =  s  ->  { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) }  =  { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } )
5956breq1d 4053 . . . . . . . . . . 11  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q  <->  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q ) )
6059abbidv 2322 . . . . . . . . . 10  |-  ( l  =  s  ->  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q }  =  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } )
6158, 60opeq12d 3826 . . . . . . . . 9  |-  ( l  =  s  ->  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  =  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >. )
6261breq1d 4053 . . . . . . . 8  |-  ( l  =  s  ->  ( <. { p  |  p 
<Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
6362rexbidv 2506 . . . . . . 7  |-  ( l  =  s  ->  ( E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )  <->  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q
`  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r )
) )
64 caucvgprpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >.
6564fveq2i 5573 . . . . . . . 8  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. } >. )
66 nqex 7458 . . . . . . . . . 10  |-  Q.  e.  _V
6766rabex 4187 . . . . . . . . 9  |-  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q 
q } >.  <P  ( F `  r ) }  e.  _V
6866rabex 4187 . . . . . . . . 9  |-  { u  e.  Q.  |  E. r  e.  N.  ( ( F `
 r )  +P. 
<. { p  |  p 
<Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. ) 
<P  <. { p  |  p  <Q  u } ,  { q  |  u 
<Q  q } >. }  e.  _V
6967, 68op1st 6222 . . . . . . . 8  |-  ( 1st `  <. { l  e. 
Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) } ,  {
u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q 
q } >. )  <P 
<. { p  |  p 
<Q  u } ,  {
q  |  u  <Q  q } >. } >. )  =  { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
7065, 69eqtri 2225 . . . . . . 7  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
) } ,  {
q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) 
<Q  q } >.  <P  ( F `  r ) }
7163, 70elrab2 2931 . . . . . 6  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. r  e.  N.  <. { p  |  p  <Q  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  ( s  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
)  <Q  q } >.  <P 
( F `  r
) ) )
7217, 55, 71sylanbrc 417 . . . . 5  |-  ( ( ( ( ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  /\  ( s  +Q  s )  <Q  x
)  ->  s  e.  ( 1st `  L ) )
7372ex 115 . . . 4  |-  ( ( ( ph  /\  (
x  e.  Q.  /\  x  e.  ( 1st `  A ) ) )  /\  s  e.  Q. )  ->  ( ( s  +Q  s )  <Q  x  ->  s  e.  ( 1st `  L ) ) )
7473reximdva 2607 . . 3  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  -> 
( E. s  e. 
Q.  ( s  +Q  s )  <Q  x  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) ) )
7516, 74mpd 13 . 2  |-  ( (
ph  /\  ( x  e.  Q.  /\  x  e.  ( 1st `  A
) ) )  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
7614, 75rexlimddv 2627 1  |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   {cab 2190   A.wral 2483   E.wrex 2484   {crab 2487   <.cop 3635   class class class wbr 4043   -->wf 5264   ` cfv 5268  (class class class)co 5934   1stc1st 6214   2ndc2nd 6215   1oc1o 6485   [cec 6608   N.cnpi 7367    <N clti 7370    ~Q ceq 7374   Q.cnq 7375    +Q cplq 7377   *Qcrq 7379    <Q cltq 7380   P.cnp 7386    +P. cpp 7388    <P cltp 7390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-inp 7561  df-iltp 7565
This theorem is referenced by:  caucvgprprlemm  7791
  Copyright terms: Public domain W3C validator