ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemladdfu Unicode version

Theorem caucvgprlemladdfu 7678
Description: Lemma for caucvgpr 7683. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
caucvgprlemladd.s  |-  ( ph  ->  S  e.  Q. )
Assertion
Ref Expression
caucvgprlemladdfu  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  { u  e.  Q.  |  E. j  e.  N.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u } )
Distinct variable groups:    A, j    j, F, u, l    n, F, k    k, L, j    S, l, u, j    j,
k
Allowed substitution hints:    ph( u, j, k, n, l)    A( u, k, n, l)    S( k, n)    L( u, n, l)

Proof of Theorem caucvgprlemladdfu
Dummy variables  m  r  s  t  v  w  z  f  g  h  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgpr.f . . . . . . 7  |-  ( ph  ->  F : N. --> Q. )
2 caucvgpr.cau . . . . . . 7  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
3 caucvgpr.bnd . . . . . . 7  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
4 caucvgpr.lim . . . . . . 7  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
51, 2, 3, 4caucvgprlemcl 7677 . . . . . 6  |-  ( ph  ->  L  e.  P. )
6 caucvgprlemladd.s . . . . . . 7  |-  ( ph  ->  S  e.  Q. )
7 nqprlu 7548 . . . . . . 7  |-  ( S  e.  Q.  ->  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >.  e.  P. )
86, 7syl 14 . . . . . 6  |-  ( ph  -> 
<. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )
9 df-iplp 7469 . . . . . . 7  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
10 addclnq 7376 . . . . . . 7  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
119, 10genpelvu 7514 . . . . . 6  |-  ( ( L  e.  P.  /\  <. { l  |  l 
<Q  S } ,  {
u  |  S  <Q  u } >.  e.  P. )  ->  ( r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  L ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
125, 8, 11syl2anc 411 . . . . 5  |-  ( ph  ->  ( r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  <->  E. s  e.  ( 2nd `  L ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t ) ) )
1312biimpa 296 . . . 4  |-  ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  E. s  e.  ( 2nd `  L
) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) r  =  ( s  +Q  t ) )
14 breq2 4009 . . . . . . . . . . . . . . . 16  |-  ( u  =  s  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
1514rexbidv 2478 . . . . . . . . . . . . . . 15  |-  ( u  =  s  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
164fveq2i 5520 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
17 nqex 7364 . . . . . . . . . . . . . . . . . 18  |-  Q.  e.  _V
1817rabex 4149 . . . . . . . . . . . . . . . . 17  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
1917rabex 4149 . . . . . . . . . . . . . . . . 17  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
2018, 19op2nd 6150 . . . . . . . . . . . . . . . 16  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
2116, 20eqtri 2198 . . . . . . . . . . . . . . 15  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
2215, 21elrab2 2898 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 2nd `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2322biimpi 120 . . . . . . . . . . . . 13  |-  ( s  e.  ( 2nd `  L
)  ->  ( s  e.  Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
s ) )
2423adantr 276 . . . . . . . . . . . 12  |-  ( ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  ->  (
s  e.  Q.  /\  E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s ) )
2524adantl 277 . . . . . . . . . . 11  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
( s  e.  Q.  /\ 
E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s ) )
2625adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  e.  Q.  /\ 
E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s ) )
2726simpld 112 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
s  e.  Q. )
28 vex 2742 . . . . . . . . . . . . . 14  |-  t  e. 
_V
29 breq2 4009 . . . . . . . . . . . . . 14  |-  ( u  =  t  ->  ( S  <Q  u  <->  S  <Q  t ) )
30 ltnqex 7550 . . . . . . . . . . . . . . 15  |-  { l  |  l  <Q  S }  e.  _V
31 gtnqex 7551 . . . . . . . . . . . . . . 15  |-  { u  |  S  <Q  u }  e.  _V
3230, 31op2nd 6150 . . . . . . . . . . . . . 14  |-  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  =  { u  |  S  <Q  u }
3328, 29, 32elab2 2887 . . . . . . . . . . . . 13  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  <->  S  <Q  t )
34 ltrelnq 7366 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
3534brel 4680 . . . . . . . . . . . . 13  |-  ( S 
<Q  t  ->  ( S  e.  Q.  /\  t  e.  Q. ) )
3633, 35sylbi 121 . . . . . . . . . . . 12  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  ( S  e.  Q.  /\  t  e. 
Q. ) )
3736simprd 114 . . . . . . . . . . 11  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  t  e.  Q. )
3837ad2antll 491 . . . . . . . . . 10  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
t  e.  Q. )
3938adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
t  e.  Q. )
40 addclnq 7376 . . . . . . . . 9  |-  ( ( s  e.  Q.  /\  t  e.  Q. )  ->  ( s  +Q  t
)  e.  Q. )
4127, 39, 40syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( s  +Q  t
)  e.  Q. )
42 eleq1 2240 . . . . . . . . 9  |-  ( r  =  ( s  +Q  t )  ->  (
r  e.  Q.  <->  ( s  +Q  t )  e.  Q. ) )
4342adantl 277 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( r  e.  Q.  <->  ( s  +Q  t )  e.  Q. ) )
4441, 43mpbird 167 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  Q. )
4526simprd 114 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s )
46 fveq2 5517 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  ( F `  j )  =  ( F `  m ) )
47 opeq1 3780 . . . . . . . . . . . . . . 15  |-  ( j  =  m  ->  <. j ,  1o >.  =  <. m ,  1o >. )
4847eceq1d 6573 . . . . . . . . . . . . . 14  |-  ( j  =  m  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. m ,  1o >. ]  ~Q  )
4948fveq2d 5521 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )
5046, 49oveq12d 5895 . . . . . . . . . . . 12  |-  ( j  =  m  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )
5150breq1d 4015 . . . . . . . . . . 11  |-  ( j  =  m  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s  <->  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
s ) )
5251cbvrexv 2706 . . . . . . . . . 10  |-  ( E. j  e.  N.  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  s  <->  E. m  e.  N.  ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
s )
5345, 52sylib 122 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. m  e.  N.  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )
5433biimpi 120 . . . . . . . . . . . . . . . . 17  |-  ( t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  ->  S  <Q  t )
5554ad2antll 491 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  ->  S  <Q  t )
5655adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  S  <Q  t )
5756ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  ->  S  <Q  t )
586ad5antr 496 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  ->  S  e.  Q. )
5939ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
t  e.  Q. )
601ad5antr 496 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  ->  F : N. --> Q. )
61 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  ->  m  e.  N. )
6260, 61ffvelcdmd 5654 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( F `  m
)  e.  Q. )
63 nnnq 7423 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  N.  ->  [ <. m ,  1o >. ]  ~Q  e.  Q. )
64 recclnq 7393 . . . . . . . . . . . . . . . . 17  |-  ( [
<. m ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )
6561, 63, 643syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )
66 addclnq 7376 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  m
)  e.  Q.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )
6762, 65, 66syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )
68 ltanqg 7401 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  Q.  /\  t  e.  Q.  /\  (
( F `  m
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )  ->  ( S  <Q  t  <->  ( ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  ( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  t ) ) )
6958, 59, 67, 68syl3anc 1238 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( S  <Q  t  <->  ( ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  ( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  t ) ) )
7057, 69mpbid 147 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  (
( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  +Q  t ) )
71 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )
72 ltanqg 7401 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  Q.  /\  w  e.  Q.  /\  v  e.  Q. )  ->  (
z  <Q  w  <->  ( v  +Q  z )  <Q  (
v  +Q  w ) ) )
7372adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  /\  ( z  e.  Q.  /\  w  e.  Q.  /\  v  e.  Q. )
)  ->  ( z  <Q  w  <->  ( v  +Q  z )  <Q  (
v  +Q  w ) ) )
7427ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
s  e.  Q. )
75 addcomnqg 7382 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  +Q  w
)  =  ( w  +Q  z ) )
7675adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  /\  ( z  e.  Q.  /\  w  e.  Q. )
)  ->  ( z  +Q  w )  =  ( w  +Q  z ) )
7773, 67, 74, 59, 76caovord2d 6046 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
s  <->  ( ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  t )  <Q 
( s  +Q  t
) ) )
7871, 77mpbid 147 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  t )  <Q  (
s  +Q  t ) )
79 ltsonq 7399 . . . . . . . . . . . . . 14  |-  <Q  Or  Q.
8079, 34sotri 5026 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  (
( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  +Q  t )  /\  ( ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  t )  <Q 
( s  +Q  t
) )  ->  (
( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  ( s  +Q  t
) )
8170, 78, 80syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  (
s  +Q  t ) )
82 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
r  =  ( s  +Q  t ) )
8381, 82breqtrrd 4033 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  s )  -> 
( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  r
)
8483ex 115 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  /\  m  e.  N. )  ->  ( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
s  ->  ( (
( F `  m
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  r ) )
8584reximdva 2579 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
( E. m  e. 
N.  ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
s  ->  E. m  e.  N.  ( ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  S )  <Q 
r ) )
8653, 85mpd 13 . . . . . . . 8  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. m  e.  N.  ( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  r
)
8750oveq1d 5892 . . . . . . . . . 10  |-  ( j  =  m  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  +Q  S )  =  ( ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  S ) )
8887breq1d 4015 . . . . . . . . 9  |-  ( j  =  m  ->  (
( ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  r  <->  ( ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  r ) )
8988cbvrexv 2706 . . . . . . . 8  |-  ( E. j  e.  N.  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  r  <->  E. m  e.  N.  ( ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  r
)
9086, 89sylibr 134 . . . . . . 7  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  ->  E. j  e.  N.  ( ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  r
)
91 breq2 4009 . . . . . . . . 9  |-  ( u  =  r  ->  (
( ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u  <->  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  r ) )
9291rexbidv 2478 . . . . . . . 8  |-  ( u  =  r  ->  ( E. j  e.  N.  ( ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u  <->  E. j  e.  N.  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  +Q  S ) 
<Q  r ) )
9392elrab 2895 . . . . . . 7  |-  ( r  e.  { u  e. 
Q.  |  E. j  e.  N.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u }  <->  ( r  e. 
Q.  /\  E. j  e.  N.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q 
r ) )
9444, 90, 93sylanbrc 417 . . . . . 6  |-  ( ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  /\  ( s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  r  =  ( s  +Q  t ) )  -> 
r  e.  { u  e.  Q.  |  E. j  e.  N.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u } )
9594ex 115 . . . . 5  |-  ( ( ( ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  /\  (
s  e.  ( 2nd `  L )  /\  t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )  -> 
( r  =  ( s  +Q  t )  ->  r  e.  {
u  e.  Q.  |  E. j  e.  N.  ( ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u } ) )
9695rexlimdvva 2602 . . . 4  |-  ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  ( E. s  e.  ( 2nd `  L ) E. t  e.  ( 2nd `  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
r  =  ( s  +Q  t )  -> 
r  e.  { u  e.  Q.  |  E. j  e.  N.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u } ) )
9713, 96mpd 13 . . 3  |-  ( (
ph  /\  r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
) )  ->  r  e.  { u  e.  Q.  |  E. j  e.  N.  ( ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u } )
9897ex 115 . 2  |-  ( ph  ->  ( r  e.  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  ->  r  e.  { u  e.  Q.  |  E. j  e.  N.  ( ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u } ) )
9998ssrdv 3163 1  |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )
)  C_  { u  e.  Q.  |  E. j  e.  N.  ( ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S )  <Q  u } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3131   <.cop 3597   class class class wbr 4005   -->wf 5214   ` cfv 5218  (class class class)co 5877   2ndc2nd 6142   1oc1o 6412   [cec 6535   N.cnpi 7273    <N clti 7276    ~Q ceq 7280   Q.cnq 7281    +Q cplq 7283   *Qcrq 7285    <Q cltq 7286   P.cnp 7292    +P. cpp 7294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-inp 7467  df-iplp 7469
This theorem is referenced by:  caucvgprlemladdrl  7679
  Copyright terms: Public domain W3C validator