ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlim Unicode version

Theorem caucvgprlemlim 7794
Description: Lemma for caucvgpr 7795. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemlim  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Distinct variable groups:    A, j    j, F, u, l, k    n, F, k    j, k, ph, x    k, l, u, x, j    j, L, k
Allowed substitution hints:    ph( u, n, l)    A( x, u, k, n, l)    F( x)    L( x, u, n, l)

Proof of Theorem caucvgprlemlim
StepHypRef Expression
1 archrecnq 7776 . . . 4  |-  ( x  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
21adantl 277 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
3 caucvgpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> Q. )
43ad5antr 496 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  F : N. --> Q. )
5 caucvgpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
65ad5antr 496 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
7 caucvgpr.bnd . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
87ad5antr 496 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. j  e.  N.  A  <Q  ( F `  j )
)
9 caucvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
10 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Q. )  ->  x  e. 
Q. )
1110ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  x  e.  Q. )
12 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  j  <N  k )
13 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
144, 6, 8, 9, 11, 12, 13caucvgprlem1 7792 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. ) )
154, 6, 8, 9, 11, 12, 13caucvgprlem2 7793 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  L  <P 
<. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. )
1614, 15jca 306 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) )
1716ex 115 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  ->  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1817ralrimiva 2579 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  ->  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1918ex 115 . . . 4  |-  ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  ->  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
2019reximdva 2608 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  ( E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
212, 20mpd 13 . 2  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
2221ralrimiva 2579 1  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   E.wrex 2485   {crab 2488   <.cop 3636   class class class wbr 4044   -->wf 5267   ` cfv 5271  (class class class)co 5944   1oc1o 6495   [cec 6618   N.cnpi 7385    <N clti 7388    ~Q ceq 7392   Q.cnq 7393    +Q cplq 7395   *Qcrq 7397    <Q cltq 7398    +P. cpp 7406    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-iplp 7581  df-iltp 7583
This theorem is referenced by:  caucvgpr  7795
  Copyright terms: Public domain W3C validator