ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlim Unicode version

Theorem caucvgprlemlim 7580
Description: Lemma for caucvgpr 7581. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemlim  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Distinct variable groups:    A, j    j, F, u, l, k    n, F, k    j, k, ph, x    k, l, u, x, j    j, L, k
Allowed substitution hints:    ph( u, n, l)    A( x, u, k, n, l)    F( x)    L( x, u, n, l)

Proof of Theorem caucvgprlemlim
StepHypRef Expression
1 archrecnq 7562 . . . 4  |-  ( x  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
21adantl 275 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
3 caucvgpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> Q. )
43ad5antr 488 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  F : N. --> Q. )
5 caucvgpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
65ad5antr 488 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
7 caucvgpr.bnd . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
87ad5antr 488 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. j  e.  N.  A  <Q  ( F `  j )
)
9 caucvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
10 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Q. )  ->  x  e. 
Q. )
1110ad4antr 486 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  x  e.  Q. )
12 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  j  <N  k )
13 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
144, 6, 8, 9, 11, 12, 13caucvgprlem1 7578 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. ) )
154, 6, 8, 9, 11, 12, 13caucvgprlem2 7579 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  L  <P 
<. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. )
1614, 15jca 304 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) )
1716ex 114 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  ->  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1817ralrimiva 2527 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  ->  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1918ex 114 . . . 4  |-  ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  ->  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
2019reximdva 2556 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  ( E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
212, 20mpd 13 . 2  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
2221ralrimiva 2527 1  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125   {cab 2140   A.wral 2432   E.wrex 2433   {crab 2436   <.cop 3559   class class class wbr 3961   -->wf 5159   ` cfv 5163  (class class class)co 5814   1oc1o 6346   [cec 6467   N.cnpi 7171    <N clti 7174    ~Q ceq 7178   Q.cnq 7179    +Q cplq 7181   *Qcrq 7183    <Q cltq 7184    +P. cpp 7192    <P cltp 7194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-eprel 4244  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-1o 6353  df-2o 6354  df-oadd 6357  df-omul 6358  df-er 6469  df-ec 6471  df-qs 6475  df-ni 7203  df-pli 7204  df-mi 7205  df-lti 7206  df-plpq 7243  df-mpq 7244  df-enq 7246  df-nqqs 7247  df-plqqs 7248  df-mqqs 7249  df-1nqqs 7250  df-rq 7251  df-ltnqqs 7252  df-enq0 7323  df-nq0 7324  df-0nq0 7325  df-plq0 7326  df-mq0 7327  df-inp 7365  df-iplp 7367  df-iltp 7369
This theorem is referenced by:  caucvgpr  7581
  Copyright terms: Public domain W3C validator