ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlim Unicode version

Theorem caucvgprlemlim 7431
Description: Lemma for caucvgpr 7432. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemlim  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Distinct variable groups:    A, j    j, F, u, l, k    n, F, k    j, k, ph, x    k, l, u, x, j    j, L, k
Allowed substitution hints:    ph( u, n, l)    A( x, u, k, n, l)    F( x)    L( x, u, n, l)

Proof of Theorem caucvgprlemlim
StepHypRef Expression
1 archrecnq 7413 . . . 4  |-  ( x  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
21adantl 273 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
3 caucvgpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> Q. )
43ad5antr 485 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  F : N. --> Q. )
5 caucvgpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
65ad5antr 485 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
7 caucvgpr.bnd . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
87ad5antr 485 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. j  e.  N.  A  <Q  ( F `  j )
)
9 caucvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
10 simpr 109 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Q. )  ->  x  e. 
Q. )
1110ad4antr 483 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  x  e.  Q. )
12 simpr 109 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  j  <N  k )
13 simpllr 506 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
144, 6, 8, 9, 11, 12, 13caucvgprlem1 7429 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. ) )
154, 6, 8, 9, 11, 12, 13caucvgprlem2 7430 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  L  <P 
<. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. )
1614, 15jca 302 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) )
1716ex 114 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  ->  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1817ralrimiva 2477 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  ->  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1918ex 114 . . . 4  |-  ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  ->  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
2019reximdva 2506 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  ( E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
212, 20mpd 13 . 2  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
2221ralrimiva 2477 1  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1312    e. wcel 1461   {cab 2099   A.wral 2388   E.wrex 2389   {crab 2392   <.cop 3494   class class class wbr 3893   -->wf 5075   ` cfv 5079  (class class class)co 5726   1oc1o 6258   [cec 6379   N.cnpi 7022    <N clti 7025    ~Q ceq 7029   Q.cnq 7030    +Q cplq 7032   *Qcrq 7034    <Q cltq 7035    +P. cpp 7043    <P cltp 7045
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-eprel 4169  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-irdg 6219  df-1o 6265  df-2o 6266  df-oadd 6269  df-omul 6270  df-er 6381  df-ec 6383  df-qs 6387  df-ni 7054  df-pli 7055  df-mi 7056  df-lti 7057  df-plpq 7094  df-mpq 7095  df-enq 7097  df-nqqs 7098  df-plqqs 7099  df-mqqs 7100  df-1nqqs 7101  df-rq 7102  df-ltnqqs 7103  df-enq0 7174  df-nq0 7175  df-0nq0 7176  df-plq0 7177  df-mq0 7178  df-inp 7216  df-iplp 7218  df-iltp 7220
This theorem is referenced by:  caucvgpr  7432
  Copyright terms: Public domain W3C validator