ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlim Unicode version

Theorem caucvgprlemlim 7829
Description: Lemma for caucvgpr 7830. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemlim  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Distinct variable groups:    A, j    j, F, u, l, k    n, F, k    j, k, ph, x    k, l, u, x, j    j, L, k
Allowed substitution hints:    ph( u, n, l)    A( x, u, k, n, l)    F( x)    L( x, u, n, l)

Proof of Theorem caucvgprlemlim
StepHypRef Expression
1 archrecnq 7811 . . . 4  |-  ( x  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
21adantl 277 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
3 caucvgpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> Q. )
43ad5antr 496 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  F : N. --> Q. )
5 caucvgpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
65ad5antr 496 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
7 caucvgpr.bnd . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
87ad5antr 496 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. j  e.  N.  A  <Q  ( F `  j )
)
9 caucvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
10 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Q. )  ->  x  e. 
Q. )
1110ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  x  e.  Q. )
12 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  j  <N  k )
13 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
144, 6, 8, 9, 11, 12, 13caucvgprlem1 7827 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. ) )
154, 6, 8, 9, 11, 12, 13caucvgprlem2 7828 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  L  <P 
<. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. )
1614, 15jca 306 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) )
1716ex 115 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  ->  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1817ralrimiva 2581 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  ->  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1918ex 115 . . . 4  |-  ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  ->  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
2019reximdva 2610 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  ( E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
212, 20mpd 13 . 2  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
2221ralrimiva 2581 1  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487   {crab 2490   <.cop 3646   class class class wbr 4059   -->wf 5286   ` cfv 5290  (class class class)co 5967   1oc1o 6518   [cec 6641   N.cnpi 7420    <N clti 7423    ~Q ceq 7427   Q.cnq 7428    +Q cplq 7430   *Qcrq 7432    <Q cltq 7433    +P. cpp 7441    <P cltp 7443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iplp 7616  df-iltp 7618
This theorem is referenced by:  caucvgpr  7830
  Copyright terms: Public domain W3C validator