ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemlim Unicode version

Theorem caucvgprlemlim 7765
Description: Lemma for caucvgpr 7766. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemlim  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Distinct variable groups:    A, j    j, F, u, l, k    n, F, k    j, k, ph, x    k, l, u, x, j    j, L, k
Allowed substitution hints:    ph( u, n, l)    A( x, u, k, n, l)    F( x)    L( x, u, n, l)

Proof of Theorem caucvgprlemlim
StepHypRef Expression
1 archrecnq 7747 . . . 4  |-  ( x  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
21adantl 277 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
3 caucvgpr.f . . . . . . . . . 10  |-  ( ph  ->  F : N. --> Q. )
43ad5antr 496 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  F : N. --> Q. )
5 caucvgpr.cau . . . . . . . . . 10  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
65ad5antr 496 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. n  e.  N.  A. k  e. 
N.  ( n  <N  k  ->  ( ( F `
 n )  <Q 
( ( F `  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
)  /\  ( F `  k )  <Q  (
( F `  n
)  +Q  ( *Q
`  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
7 caucvgpr.bnd . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
87ad5antr 496 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  A. j  e.  N.  A  <Q  ( F `  j )
)
9 caucvgpr.lim . . . . . . . . 9  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
10 simpr 110 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  Q. )  ->  x  e. 
Q. )
1110ad4antr 494 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  x  e.  Q. )
12 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  j  <N  k )
13 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )
144, 6, 8, 9, 11, 12, 13caucvgprlem1 7763 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l 
<Q  x } ,  {
u  |  x  <Q  u } >. ) )
154, 6, 8, 9, 11, 12, 13caucvgprlem2 7764 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  L  <P 
<. { l  |  l 
<Q  ( ( F `  k )  +Q  x
) } ,  {
u  |  ( ( F `  k )  +Q  x )  <Q  u } >. )
1614, 15jca 306 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  /\  j  <N  k )  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) )
1716ex 115 . . . . . 6  |-  ( ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  /\  k  e.  N. )  ->  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1817ralrimiva 2570 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  /\  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x )  ->  A. k  e.  N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
1918ex 115 . . . 4  |-  ( ( ( ph  /\  x  e.  Q. )  /\  j  e.  N. )  ->  (
( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  A. k  e.  N.  ( j  <N  k  ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
2019reximdva 2599 . . 3  |-  ( (
ph  /\  x  e.  Q. )  ->  ( E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  x  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) ) )
212, 20mpd 13 . 2  |-  ( (
ph  /\  x  e.  Q. )  ->  E. j  e.  N.  A. k  e. 
N.  ( j  <N 
k  ->  ( <. { l  |  l  <Q 
( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
2221ralrimiva 2570 1  |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  (
j  <N  k  ->  ( <. { l  |  l 
<Q  ( F `  k
) } ,  {
u  |  ( F `
 k )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  x } ,  { u  |  x 
<Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  (
( F `  k
)  +Q  x ) } ,  { u  |  ( ( F `
 k )  +Q  x )  <Q  u } >. ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   {crab 2479   <.cop 3626   class class class wbr 4034   -->wf 5255   ` cfv 5259  (class class class)co 5925   1oc1o 6476   [cec 6599   N.cnpi 7356    <N clti 7359    ~Q ceq 7363   Q.cnq 7364    +Q cplq 7366   *Qcrq 7368    <Q cltq 7369    +P. cpp 7377    <P cltp 7379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-iplp 7552  df-iltp 7554
This theorem is referenced by:  caucvgpr  7766
  Copyright terms: Public domain W3C validator