ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemglsq Unicode version

Theorem resqrexlemglsq 11204
Description: Lemma for resqrex 11208. The sequence formed by squaring each term of  F converges to  ( L ^
2 ). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemsqa.g  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
Assertion
Ref Expression
resqrexlemglsq  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) )
Distinct variable groups:    y, A, z   
e, F, j, k, i, y, z    x, F, k    e, L, j, k, i, y, z    ph, e, i, j, k, y, z
Allowed substitution hints:    ph( x)    A( x, e, i, j, k)    G( x, y, z, e, i, j, k)    L( x)

Proof of Theorem resqrexlemglsq
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . . . . . 7  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( L  +  f )  =  ( L  +  ( e  /  (
( F `  1
)  +  L ) ) ) )
21breq2d 4046 . . . . . 6  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( F `  k
)  <  ( L  +  f )  <->  ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
3 oveq2 5933 . . . . . . 7  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( F `  k
)  +  f )  =  ( ( F `
 k )  +  ( e  /  (
( F `  1
)  +  L ) ) ) )
43breq2d 4046 . . . . . 6  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( L  <  ( ( F `
 k )  +  f )  <->  L  <  ( ( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
52, 4anbi12d 473 . . . . 5  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) )  <-> 
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) ) )
65rexralbidv 2523 . . . 4  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) ) )
7 resqrexlemgt0.lim . . . . . . 7  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
8 fveq2 5561 . . . . . . . . . . . 12  |-  ( i  =  k  ->  ( F `  i )  =  ( F `  k ) )
98breq1d 4044 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  k )  <  ( L  +  e )
) )
108oveq1d 5940 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( F `  i
)  +  e )  =  ( ( F `
 k )  +  e ) )
1110breq2d 4046 . . . . . . . . . . 11  |-  ( i  =  k  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  k
)  +  e ) ) )
129, 11anbi12d 473 . . . . . . . . . 10  |-  ( i  =  k  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) ) )
1312cbvralv 2729 . . . . . . . . 9  |-  ( A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
1413rexbii 2504 . . . . . . . 8  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
1514ralbii 2503 . . . . . . 7  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
167, 15sylib 122 . . . . . 6  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
17 oveq2 5933 . . . . . . . . . 10  |-  ( e  =  f  ->  ( L  +  e )  =  ( L  +  f ) )
1817breq2d 4046 . . . . . . . . 9  |-  ( e  =  f  ->  (
( F `  k
)  <  ( L  +  e )  <->  ( F `  k )  <  ( L  +  f )
) )
19 oveq2 5933 . . . . . . . . . 10  |-  ( e  =  f  ->  (
( F `  k
)  +  e )  =  ( ( F `
 k )  +  f ) )
2019breq2d 4046 . . . . . . . . 9  |-  ( e  =  f  ->  ( L  <  ( ( F `
 k )  +  e )  <->  L  <  ( ( F `  k
)  +  f ) ) )
2118, 20anbi12d 473 . . . . . . . 8  |-  ( e  =  f  ->  (
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <-> 
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) ) )
2221rexralbidv 2523 . . . . . . 7  |-  ( e  =  f  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) ) )
2322cbvralv 2729 . . . . . 6  |-  ( A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
2416, 23sylib 122 . . . . 5  |-  ( ph  ->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
2524adantr 276 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
26 simpr 110 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
27 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
28 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
29 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
3027, 28, 29resqrexlemf 11189 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
3130adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  F : NN
--> RR+ )
32 1nn 9018 . . . . . . . . . 10  |-  1  e.  NN
3332a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  NN )
3431, 33ffvelcdmd 5701 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR+ )
3534rpred 9788 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR )
36 resqrexlemgt0.rr . . . . . . . 8  |-  ( ph  ->  L  e.  RR )
3736adantr 276 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  L  e.  RR )
3835, 37readdcld 8073 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 )  +  L )  e.  RR )
3934rpgt0d 9791 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <  ( F `  1 ) )
4027, 28, 29, 36, 7resqrexlemgt0 11202 . . . . . . . 8  |-  ( ph  ->  0  <_  L )
4140adantr 276 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <_  L )
42 addgtge0 8494 . . . . . . 7  |-  ( ( ( ( F ` 
1 )  e.  RR  /\  L  e.  RR )  /\  ( 0  < 
( F `  1
)  /\  0  <_  L ) )  ->  0  <  ( ( F ` 
1 )  +  L
) )
4335, 37, 39, 41, 42syl22anc 1250 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <  ( ( F `  1
)  +  L ) )
4438, 43elrpd 9785 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 )  +  L )  e.  RR+ )
4526, 44rpdivcld 9806 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  ( ( F `
 1 )  +  L ) )  e.  RR+ )
466, 25, 45rspcdva 2873 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
47 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
j  e.  NN )
48 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
k  e.  ( ZZ>= `  j ) )
49 eluznn 9691 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
5047, 48, 49syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
k  e.  NN )
5131ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  F : NN --> RR+ )
5251, 50ffvelcdmd 5701 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  RR+ )
53 2z 9371 . . . . . . . . . . 11  |-  2  e.  ZZ
5453a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
2  e.  ZZ )
5552, 54rpexpcld 10806 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  e.  RR+ )
56 fveq2 5561 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
5756oveq1d 5940 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( F `  x
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
58 resqrexlemsqa.g . . . . . . . . . 10  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
5957, 58fvmptg 5640 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( F `  k ) ^ 2 )  e.  RR+ )  ->  ( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
6050, 55, 59syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
6152rpred 9788 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  RR )
6261recnd 8072 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  CC )
6337ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  e.  RR )
6463recnd 8072 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  e.  CC )
65 subsq 10755 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  e.  CC  /\  L  e.  CC )  ->  ( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  =  ( ( ( F `  k )  +  L )  x.  ( ( F `  k )  -  L
) ) )
6662, 64, 65syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  =  ( ( ( F `  k )  +  L )  x.  ( ( F `  k )  -  L
) ) )
6761, 63readdcld 8073 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  +  L
)  e.  RR )
6861, 63resubcld 8424 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  -  L
)  e.  RR )
6967, 68remulcld 8074 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  e.  RR )
7038ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F ` 
1 )  +  L
)  e.  RR )
7170, 68remulcld 8074 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 1 )  +  L )  x.  (
( F `  k
)  -  L ) )  e.  RR )
7226ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
e  e.  RR+ )
7372rpred 9788 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
e  e.  RR )
7428ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  A  e.  RR )
7529ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  A )
767ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
7727, 74, 75, 63, 76, 50resqrexlemoverl 11203 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  <_  ( F `  k ) )
7861, 63subge0d 8579 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( 0  <_  (
( F `  k
)  -  L )  <-> 
L  <_  ( F `  k ) ) )
7977, 78mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  ( ( F `  k )  -  L ) )
80 fveq2 5561 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
8180oveq1d 5940 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( F `  k
)  +  L )  =  ( ( F `
 1 )  +  L ) )
82 eqle 8135 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  k )  +  L
)  e.  RR  /\  ( ( F `  k )  +  L
)  =  ( ( F `  1 )  +  L ) )  ->  ( ( F `
 k )  +  L )  <_  (
( F `  1
)  +  L ) )
8367, 81, 82syl2an 289 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  k  =  1 )  ->  ( ( F `
 k )  +  L )  <_  (
( F `  1
)  +  L ) )
8461adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  e.  RR )
8535ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  1
)  e.  RR )
8663adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  ->  L  e.  RR )
8728ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  ->  A  e.  RR )
8829ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
0  <_  A )
8932a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
1  e.  NN )
9050adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
k  e.  NN )
91 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
1  <  k )
9227, 87, 88, 89, 90, 91resqrexlemdecn 11194 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  <  ( F `  1 ) )
9384, 85, 92ltled 8162 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  <_  ( F `  1 ) )
9484, 85, 86, 93leadd1dd 8603 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( ( F `  k )  +  L
)  <_  ( ( F `  1 )  +  L ) )
95 nn1gt1 9041 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  =  1  \/  1  <  k ) )
9650, 95syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( k  =  1  \/  1  <  k
) )
9783, 94, 96mpjaodan 799 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  +  L
)  <_  ( ( F `  1 )  +  L ) )
9867, 70, 68, 79, 97lemul1ad 8983 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  <_  ( (
( F `  1
)  +  L )  x.  ( ( F `
 k )  -  L ) ) )
99 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) ) )
10045ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( e  /  (
( F `  1
)  +  L ) )  e.  RR+ )
101100rpred 9788 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( e  /  (
( F `  1
)  +  L ) )  e.  RR )
10261, 63, 101ltsubadd2d 8587 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  -  L )  <  (
e  /  ( ( F `  1 )  +  L ) )  <-> 
( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) ) ) )
10399, 102mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  -  L
)  <  ( e  /  ( ( F `
 1 )  +  L ) ) )
10444ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F ` 
1 )  +  L
)  e.  RR+ )
10568, 73, 104ltmuldiv2d 9837 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( ( F `  1 )  +  L )  x.  ( ( F `  k )  -  L
) )  <  e  <->  ( ( F `  k
)  -  L )  <  ( e  / 
( ( F ` 
1 )  +  L
) ) ) )
106103, 105mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 1 )  +  L )  x.  (
( F `  k
)  -  L ) )  <  e )
10769, 71, 73, 98, 106lelttrd 8168 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  <  e )
10866, 107eqbrtrd 4056 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  <  e )
10961resqcld 10808 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  e.  RR )
11063resqcld 10808 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  e.  RR )
111109, 110, 73ltsubadd2d 8587 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( ( F `  k ) ^ 2 )  -  ( L ^ 2 ) )  <  e  <->  ( ( F `  k ) ^ 2 )  < 
( ( L ^
2 )  +  e ) ) )
112108, 111mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  <  ( ( L ^ 2 )  +  e ) )
11360, 112eqbrtrd 4056 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  <  ( ( L ^ 2 )  +  e ) )
11460, 109eqeltrd 2273 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  e.  RR )
115114, 73readdcld 8073 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( G `  k )  +  e )  e.  RR )
11641ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  L )
117 le2sq2 10724 . . . . . . . . . 10  |-  ( ( ( L  e.  RR  /\  0  <_  L )  /\  ( ( F `  k )  e.  RR  /\  L  <_  ( F `  k ) ) )  ->  ( L ^
2 )  <_  (
( F `  k
) ^ 2 ) )
11863, 116, 61, 77, 117syl22anc 1250 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <_  ( ( F `  k ) ^ 2 ) )
119118, 60breqtrrd 4062 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <_  ( G `  k ) )
120114, 72ltaddrpd 9822 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  <  ( ( G `  k )  +  e ) )
121110, 114, 115, 119, 120lelttrd 8168 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <  ( ( G `  k )  +  e ) )
122113, 121jca 306 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) )
123122ex 115 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( F `  k )  <  ( L  +  ( e  /  (
( F `  1
)  +  L ) ) )  /\  L  <  ( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) )  ->  (
( G `  k
)  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) ) )
124123ralimdva 2564 . . . 4  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) )  /\  L  <  ( ( F `
 k )  +  ( e  /  (
( F `  1
)  +  L ) ) ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) ) )
125124reximdva 2599 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) ) )
12646, 125mpd 13 . 2  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) )
127126ralrimiva 2570 1  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {csn 3623   class class class wbr 4034    |-> cmpt 4095    X. cxp 4662   -->wf 5255   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   CCcc 7894   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214    / cdiv 8716   NNcn 9007   2c2 9058   ZZcz 9343   ZZ>=cuz 9618   RR+crp 9745    seqcseq 10556   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  resqrexlemsqa  11206
  Copyright terms: Public domain W3C validator