ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemglsq Unicode version

Theorem resqrexlemglsq 11169
Description: Lemma for resqrex 11173. The sequence formed by squaring each term of  F converges to  ( L ^
2 ). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemsqa.g  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
Assertion
Ref Expression
resqrexlemglsq  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) )
Distinct variable groups:    y, A, z   
e, F, j, k, i, y, z    x, F, k    e, L, j, k, i, y, z    ph, e, i, j, k, y, z
Allowed substitution hints:    ph( x)    A( x, e, i, j, k)    G( x, y, z, e, i, j, k)    L( x)

Proof of Theorem resqrexlemglsq
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 oveq2 5927 . . . . . . 7  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( L  +  f )  =  ( L  +  ( e  /  (
( F `  1
)  +  L ) ) ) )
21breq2d 4042 . . . . . 6  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( F `  k
)  <  ( L  +  f )  <->  ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
3 oveq2 5927 . . . . . . 7  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( F `  k
)  +  f )  =  ( ( F `
 k )  +  ( e  /  (
( F `  1
)  +  L ) ) ) )
43breq2d 4042 . . . . . 6  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( L  <  ( ( F `
 k )  +  f )  <->  L  <  ( ( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
52, 4anbi12d 473 . . . . 5  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) )  <-> 
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) ) )
65rexralbidv 2520 . . . 4  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) ) )
7 resqrexlemgt0.lim . . . . . . 7  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
8 fveq2 5555 . . . . . . . . . . . 12  |-  ( i  =  k  ->  ( F `  i )  =  ( F `  k ) )
98breq1d 4040 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  k )  <  ( L  +  e )
) )
108oveq1d 5934 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( F `  i
)  +  e )  =  ( ( F `
 k )  +  e ) )
1110breq2d 4042 . . . . . . . . . . 11  |-  ( i  =  k  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  k
)  +  e ) ) )
129, 11anbi12d 473 . . . . . . . . . 10  |-  ( i  =  k  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) ) )
1312cbvralv 2726 . . . . . . . . 9  |-  ( A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
1413rexbii 2501 . . . . . . . 8  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
1514ralbii 2500 . . . . . . 7  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
167, 15sylib 122 . . . . . 6  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
17 oveq2 5927 . . . . . . . . . 10  |-  ( e  =  f  ->  ( L  +  e )  =  ( L  +  f ) )
1817breq2d 4042 . . . . . . . . 9  |-  ( e  =  f  ->  (
( F `  k
)  <  ( L  +  e )  <->  ( F `  k )  <  ( L  +  f )
) )
19 oveq2 5927 . . . . . . . . . 10  |-  ( e  =  f  ->  (
( F `  k
)  +  e )  =  ( ( F `
 k )  +  f ) )
2019breq2d 4042 . . . . . . . . 9  |-  ( e  =  f  ->  ( L  <  ( ( F `
 k )  +  e )  <->  L  <  ( ( F `  k
)  +  f ) ) )
2118, 20anbi12d 473 . . . . . . . 8  |-  ( e  =  f  ->  (
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <-> 
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) ) )
2221rexralbidv 2520 . . . . . . 7  |-  ( e  =  f  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) ) )
2322cbvralv 2726 . . . . . 6  |-  ( A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
2416, 23sylib 122 . . . . 5  |-  ( ph  ->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
2524adantr 276 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
26 simpr 110 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
27 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
28 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
29 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
3027, 28, 29resqrexlemf 11154 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
3130adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  F : NN
--> RR+ )
32 1nn 8995 . . . . . . . . . 10  |-  1  e.  NN
3332a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  NN )
3431, 33ffvelcdmd 5695 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR+ )
3534rpred 9765 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR )
36 resqrexlemgt0.rr . . . . . . . 8  |-  ( ph  ->  L  e.  RR )
3736adantr 276 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  L  e.  RR )
3835, 37readdcld 8051 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 )  +  L )  e.  RR )
3934rpgt0d 9768 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <  ( F `  1 ) )
4027, 28, 29, 36, 7resqrexlemgt0 11167 . . . . . . . 8  |-  ( ph  ->  0  <_  L )
4140adantr 276 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <_  L )
42 addgtge0 8471 . . . . . . 7  |-  ( ( ( ( F ` 
1 )  e.  RR  /\  L  e.  RR )  /\  ( 0  < 
( F `  1
)  /\  0  <_  L ) )  ->  0  <  ( ( F ` 
1 )  +  L
) )
4335, 37, 39, 41, 42syl22anc 1250 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <  ( ( F `  1
)  +  L ) )
4438, 43elrpd 9762 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 )  +  L )  e.  RR+ )
4526, 44rpdivcld 9783 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  ( ( F `
 1 )  +  L ) )  e.  RR+ )
466, 25, 45rspcdva 2870 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
47 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
j  e.  NN )
48 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
k  e.  ( ZZ>= `  j ) )
49 eluznn 9668 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
5047, 48, 49syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
k  e.  NN )
5131ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  F : NN --> RR+ )
5251, 50ffvelcdmd 5695 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  RR+ )
53 2z 9348 . . . . . . . . . . 11  |-  2  e.  ZZ
5453a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
2  e.  ZZ )
5552, 54rpexpcld 10771 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  e.  RR+ )
56 fveq2 5555 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
5756oveq1d 5934 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( F `  x
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
58 resqrexlemsqa.g . . . . . . . . . 10  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
5957, 58fvmptg 5634 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( F `  k ) ^ 2 )  e.  RR+ )  ->  ( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
6050, 55, 59syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
6152rpred 9765 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  RR )
6261recnd 8050 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  CC )
6337ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  e.  RR )
6463recnd 8050 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  e.  CC )
65 subsq 10720 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  e.  CC  /\  L  e.  CC )  ->  ( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  =  ( ( ( F `  k )  +  L )  x.  ( ( F `  k )  -  L
) ) )
6662, 64, 65syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  =  ( ( ( F `  k )  +  L )  x.  ( ( F `  k )  -  L
) ) )
6761, 63readdcld 8051 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  +  L
)  e.  RR )
6861, 63resubcld 8402 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  -  L
)  e.  RR )
6967, 68remulcld 8052 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  e.  RR )
7038ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F ` 
1 )  +  L
)  e.  RR )
7170, 68remulcld 8052 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 1 )  +  L )  x.  (
( F `  k
)  -  L ) )  e.  RR )
7226ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
e  e.  RR+ )
7372rpred 9765 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
e  e.  RR )
7428ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  A  e.  RR )
7529ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  A )
767ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
7727, 74, 75, 63, 76, 50resqrexlemoverl 11168 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  <_  ( F `  k ) )
7861, 63subge0d 8556 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( 0  <_  (
( F `  k
)  -  L )  <-> 
L  <_  ( F `  k ) ) )
7977, 78mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  ( ( F `  k )  -  L ) )
80 fveq2 5555 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
8180oveq1d 5934 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( F `  k
)  +  L )  =  ( ( F `
 1 )  +  L ) )
82 eqle 8113 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  k )  +  L
)  e.  RR  /\  ( ( F `  k )  +  L
)  =  ( ( F `  1 )  +  L ) )  ->  ( ( F `
 k )  +  L )  <_  (
( F `  1
)  +  L ) )
8367, 81, 82syl2an 289 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  k  =  1 )  ->  ( ( F `
 k )  +  L )  <_  (
( F `  1
)  +  L ) )
8461adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  e.  RR )
8535ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  1
)  e.  RR )
8663adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  ->  L  e.  RR )
8728ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  ->  A  e.  RR )
8829ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
0  <_  A )
8932a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
1  e.  NN )
9050adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
k  e.  NN )
91 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
1  <  k )
9227, 87, 88, 89, 90, 91resqrexlemdecn 11159 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  <  ( F `  1 ) )
9384, 85, 92ltled 8140 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  <_  ( F `  1 ) )
9484, 85, 86, 93leadd1dd 8580 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( ( F `  k )  +  L
)  <_  ( ( F `  1 )  +  L ) )
95 nn1gt1 9018 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  =  1  \/  1  <  k ) )
9650, 95syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( k  =  1  \/  1  <  k
) )
9783, 94, 96mpjaodan 799 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  +  L
)  <_  ( ( F `  1 )  +  L ) )
9867, 70, 68, 79, 97lemul1ad 8960 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  <_  ( (
( F `  1
)  +  L )  x.  ( ( F `
 k )  -  L ) ) )
99 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) ) )
10045ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( e  /  (
( F `  1
)  +  L ) )  e.  RR+ )
101100rpred 9765 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( e  /  (
( F `  1
)  +  L ) )  e.  RR )
10261, 63, 101ltsubadd2d 8564 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  -  L )  <  (
e  /  ( ( F `  1 )  +  L ) )  <-> 
( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) ) ) )
10399, 102mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  -  L
)  <  ( e  /  ( ( F `
 1 )  +  L ) ) )
10444ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F ` 
1 )  +  L
)  e.  RR+ )
10568, 73, 104ltmuldiv2d 9814 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( ( F `  1 )  +  L )  x.  ( ( F `  k )  -  L
) )  <  e  <->  ( ( F `  k
)  -  L )  <  ( e  / 
( ( F ` 
1 )  +  L
) ) ) )
106103, 105mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 1 )  +  L )  x.  (
( F `  k
)  -  L ) )  <  e )
10769, 71, 73, 98, 106lelttrd 8146 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  <  e )
10866, 107eqbrtrd 4052 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  <  e )
10961resqcld 10773 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  e.  RR )
11063resqcld 10773 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  e.  RR )
111109, 110, 73ltsubadd2d 8564 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( ( F `  k ) ^ 2 )  -  ( L ^ 2 ) )  <  e  <->  ( ( F `  k ) ^ 2 )  < 
( ( L ^
2 )  +  e ) ) )
112108, 111mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  <  ( ( L ^ 2 )  +  e ) )
11360, 112eqbrtrd 4052 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  <  ( ( L ^ 2 )  +  e ) )
11460, 109eqeltrd 2270 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  e.  RR )
115114, 73readdcld 8051 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( G `  k )  +  e )  e.  RR )
11641ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  L )
117 le2sq2 10689 . . . . . . . . . 10  |-  ( ( ( L  e.  RR  /\  0  <_  L )  /\  ( ( F `  k )  e.  RR  /\  L  <_  ( F `  k ) ) )  ->  ( L ^
2 )  <_  (
( F `  k
) ^ 2 ) )
11863, 116, 61, 77, 117syl22anc 1250 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <_  ( ( F `  k ) ^ 2 ) )
119118, 60breqtrrd 4058 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <_  ( G `  k ) )
120114, 72ltaddrpd 9799 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  <  ( ( G `  k )  +  e ) )
121110, 114, 115, 119, 120lelttrd 8146 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <  ( ( G `  k )  +  e ) )
122113, 121jca 306 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) )
123122ex 115 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( F `  k )  <  ( L  +  ( e  /  (
( F `  1
)  +  L ) ) )  /\  L  <  ( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) )  ->  (
( G `  k
)  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) ) )
124123ralimdva 2561 . . . 4  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) )  /\  L  <  ( ( F `
 k )  +  ( e  /  (
( F `  1
)  +  L ) ) ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) ) )
125124reximdva 2596 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) ) )
12646, 125mpd 13 . 2  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) )
127126ralrimiva 2567 1  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {csn 3619   class class class wbr 4030    |-> cmpt 4091    X. cxp 4658   -->wf 5251   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    + caddc 7877    x. cmul 7879    < clt 8056    <_ cle 8057    - cmin 8192    / cdiv 8693   NNcn 8984   2c2 9035   ZZcz 9320   ZZ>=cuz 9595   RR+crp 9722    seqcseq 10521   ^cexp 10612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613
This theorem is referenced by:  resqrexlemsqa  11171
  Copyright terms: Public domain W3C validator