ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemglsq Unicode version

Theorem resqrexlemglsq 11015
Description: Lemma for resqrex 11019. The sequence formed by squaring each term of  F converges to  ( L ^
2 ). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemsqa.g  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
Assertion
Ref Expression
resqrexlemglsq  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) )
Distinct variable groups:    y, A, z   
e, F, j, k, i, y, z    x, F, k    e, L, j, k, i, y, z    ph, e, i, j, k, y, z
Allowed substitution hints:    ph( x)    A( x, e, i, j, k)    G( x, y, z, e, i, j, k)    L( x)

Proof of Theorem resqrexlemglsq
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 oveq2 5877 . . . . . . 7  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( L  +  f )  =  ( L  +  ( e  /  (
( F `  1
)  +  L ) ) ) )
21breq2d 4012 . . . . . 6  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( F `  k
)  <  ( L  +  f )  <->  ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
3 oveq2 5877 . . . . . . 7  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( F `  k
)  +  f )  =  ( ( F `
 k )  +  ( e  /  (
( F `  1
)  +  L ) ) ) )
43breq2d 4012 . . . . . 6  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( L  <  ( ( F `
 k )  +  f )  <->  L  <  ( ( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
52, 4anbi12d 473 . . . . 5  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  (
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) )  <-> 
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) ) )
65rexralbidv 2503 . . . 4  |-  ( f  =  ( e  / 
( ( F ` 
1 )  +  L
) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) ) )
7 resqrexlemgt0.lim . . . . . . 7  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
8 fveq2 5511 . . . . . . . . . . . 12  |-  ( i  =  k  ->  ( F `  i )  =  ( F `  k ) )
98breq1d 4010 . . . . . . . . . . 11  |-  ( i  =  k  ->  (
( F `  i
)  <  ( L  +  e )  <->  ( F `  k )  <  ( L  +  e )
) )
108oveq1d 5884 . . . . . . . . . . . 12  |-  ( i  =  k  ->  (
( F `  i
)  +  e )  =  ( ( F `
 k )  +  e ) )
1110breq2d 4012 . . . . . . . . . . 11  |-  ( i  =  k  ->  ( L  <  ( ( F `
 i )  +  e )  <->  L  <  ( ( F `  k
)  +  e ) ) )
129, 11anbi12d 473 . . . . . . . . . 10  |-  ( i  =  k  ->  (
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <-> 
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) ) )
1312cbvralv 2703 . . . . . . . . 9  |-  ( A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
1413rexbii 2484 . . . . . . . 8  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
1514ralbii 2483 . . . . . . 7  |-  ( A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
167, 15sylib 122 . . . . . 6  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) ) )
17 oveq2 5877 . . . . . . . . . 10  |-  ( e  =  f  ->  ( L  +  e )  =  ( L  +  f ) )
1817breq2d 4012 . . . . . . . . 9  |-  ( e  =  f  ->  (
( F `  k
)  <  ( L  +  e )  <->  ( F `  k )  <  ( L  +  f )
) )
19 oveq2 5877 . . . . . . . . . 10  |-  ( e  =  f  ->  (
( F `  k
)  +  e )  =  ( ( F `
 k )  +  f ) )
2019breq2d 4012 . . . . . . . . 9  |-  ( e  =  f  ->  ( L  <  ( ( F `
 k )  +  e )  <->  L  <  ( ( F `  k
)  +  f ) ) )
2118, 20anbi12d 473 . . . . . . . 8  |-  ( e  =  f  ->  (
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <-> 
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) ) )
2221rexralbidv 2503 . . . . . . 7  |-  ( e  =  f  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) ) )
2322cbvralv 2703 . . . . . 6  |-  ( A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  e )  /\  L  <  ( ( F `  k )  +  e ) )  <->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
2416, 23sylib 122 . . . . 5  |-  ( ph  ->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
2524adantr 276 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  A. f  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  f )  /\  L  <  ( ( F `  k )  +  f ) ) )
26 simpr 110 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  e  e.  RR+ )
27 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
28 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
29 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
3027, 28, 29resqrexlemf 11000 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
3130adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  F : NN
--> RR+ )
32 1nn 8919 . . . . . . . . . 10  |-  1  e.  NN
3332a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  e  e.  RR+ )  ->  1  e.  NN )
3431, 33ffvelcdmd 5648 . . . . . . . 8  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR+ )
3534rpred 9683 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( F `  1 )  e.  RR )
36 resqrexlemgt0.rr . . . . . . . 8  |-  ( ph  ->  L  e.  RR )
3736adantr 276 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  L  e.  RR )
3835, 37readdcld 7977 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 )  +  L )  e.  RR )
3934rpgt0d 9686 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <  ( F `  1 ) )
4027, 28, 29, 36, 7resqrexlemgt0 11013 . . . . . . . 8  |-  ( ph  ->  0  <_  L )
4140adantr 276 . . . . . . 7  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <_  L )
42 addgtge0 8397 . . . . . . 7  |-  ( ( ( ( F ` 
1 )  e.  RR  /\  L  e.  RR )  /\  ( 0  < 
( F `  1
)  /\  0  <_  L ) )  ->  0  <  ( ( F ` 
1 )  +  L
) )
4335, 37, 39, 41, 42syl22anc 1239 . . . . . 6  |-  ( (
ph  /\  e  e.  RR+ )  ->  0  <  ( ( F `  1
)  +  L ) )
4438, 43elrpd 9680 . . . . 5  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( ( F `  1 )  +  L )  e.  RR+ )
4526, 44rpdivcld 9701 . . . 4  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( e  /  ( ( F `
 1 )  +  L ) )  e.  RR+ )
466, 25, 45rspcdva 2846 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) ) )
47 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
j  e.  NN )
48 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
k  e.  ( ZZ>= `  j ) )
49 eluznn 9589 . . . . . . . . . 10  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
5047, 48, 49syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
k  e.  NN )
5131ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  F : NN --> RR+ )
5251, 50ffvelcdmd 5648 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  RR+ )
53 2z 9270 . . . . . . . . . . 11  |-  2  e.  ZZ
5453a1i 9 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
2  e.  ZZ )
5552, 54rpexpcld 10663 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  e.  RR+ )
56 fveq2 5511 . . . . . . . . . . 11  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
5756oveq1d 5884 . . . . . . . . . 10  |-  ( x  =  k  ->  (
( F `  x
) ^ 2 )  =  ( ( F `
 k ) ^
2 ) )
58 resqrexlemsqa.g . . . . . . . . . 10  |-  G  =  ( x  e.  NN  |->  ( ( F `  x ) ^ 2 ) )
5957, 58fvmptg 5588 . . . . . . . . 9  |-  ( ( k  e.  NN  /\  ( ( F `  k ) ^ 2 )  e.  RR+ )  ->  ( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
6050, 55, 59syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  =  ( ( F `  k ) ^ 2 ) )
6152rpred 9683 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  RR )
6261recnd 7976 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  e.  CC )
6337ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  e.  RR )
6463recnd 7976 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  e.  CC )
65 subsq 10612 . . . . . . . . . . 11  |-  ( ( ( F `  k
)  e.  CC  /\  L  e.  CC )  ->  ( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  =  ( ( ( F `  k )  +  L )  x.  ( ( F `  k )  -  L
) ) )
6662, 64, 65syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  =  ( ( ( F `  k )  +  L )  x.  ( ( F `  k )  -  L
) ) )
6761, 63readdcld 7977 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  +  L
)  e.  RR )
6861, 63resubcld 8328 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  -  L
)  e.  RR )
6967, 68remulcld 7978 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  e.  RR )
7038ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F ` 
1 )  +  L
)  e.  RR )
7170, 68remulcld 7978 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 1 )  +  L )  x.  (
( F `  k
)  -  L ) )  e.  RR )
7226ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
e  e.  RR+ )
7372rpred 9683 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
e  e.  RR )
7428ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  A  e.  RR )
7529ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  A )
767ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
7727, 74, 75, 63, 76, 50resqrexlemoverl 11014 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  ->  L  <_  ( F `  k ) )
7861, 63subge0d 8482 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( 0  <_  (
( F `  k
)  -  L )  <-> 
L  <_  ( F `  k ) ) )
7977, 78mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  ( ( F `  k )  -  L ) )
80 fveq2 5511 . . . . . . . . . . . . . . 15  |-  ( k  =  1  ->  ( F `  k )  =  ( F ` 
1 ) )
8180oveq1d 5884 . . . . . . . . . . . . . 14  |-  ( k  =  1  ->  (
( F `  k
)  +  L )  =  ( ( F `
 1 )  +  L ) )
82 eqle 8039 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  k )  +  L
)  e.  RR  /\  ( ( F `  k )  +  L
)  =  ( ( F `  1 )  +  L ) )  ->  ( ( F `
 k )  +  L )  <_  (
( F `  1
)  +  L ) )
8367, 81, 82syl2an 289 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  k  =  1 )  ->  ( ( F `
 k )  +  L )  <_  (
( F `  1
)  +  L ) )
8461adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  e.  RR )
8535ad4antr 494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  1
)  e.  RR )
8663adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  ->  L  e.  RR )
8728ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  ->  A  e.  RR )
8829ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
0  <_  A )
8932a1i 9 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
1  e.  NN )
9050adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
k  e.  NN )
91 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
1  <  k )
9227, 87, 88, 89, 90, 91resqrexlemdecn 11005 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  <  ( F `  1 ) )
9384, 85, 92ltled 8066 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( F `  k
)  <_  ( F `  1 ) )
9484, 85, 86, 93leadd1dd 8506 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  /\  ( ( F `  k )  <  ( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  /\  1  <  k )  -> 
( ( F `  k )  +  L
)  <_  ( ( F `  1 )  +  L ) )
95 nn1gt1 8942 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  =  1  \/  1  <  k ) )
9650, 95syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( k  =  1  \/  1  <  k
) )
9783, 94, 96mpjaodan 798 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  +  L
)  <_  ( ( F `  1 )  +  L ) )
9867, 70, 68, 79, 97lemul1ad 8885 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  <_  ( (
( F `  1
)  +  L )  x.  ( ( F `
 k )  -  L ) ) )
99 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) ) )
10045ad3antrrr 492 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( e  /  (
( F `  1
)  +  L ) )  e.  RR+ )
101100rpred 9683 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( e  /  (
( F `  1
)  +  L ) )  e.  RR )
10261, 63, 101ltsubadd2d 8490 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  -  L )  <  (
e  /  ( ( F `  1 )  +  L ) )  <-> 
( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) ) ) )
10399, 102mpbird 167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k )  -  L
)  <  ( e  /  ( ( F `
 1 )  +  L ) ) )
10444ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F ` 
1 )  +  L
)  e.  RR+ )
10568, 73, 104ltmuldiv2d 9732 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( ( F `  1 )  +  L )  x.  ( ( F `  k )  -  L
) )  <  e  <->  ( ( F `  k
)  -  L )  <  ( e  / 
( ( F ` 
1 )  +  L
) ) ) )
106103, 105mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 1 )  +  L )  x.  (
( F `  k
)  -  L ) )  <  e )
10769, 71, 73, 98, 106lelttrd 8072 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k )  +  L )  x.  (
( F `  k
)  -  L ) )  <  e )
10866, 107eqbrtrd 4022 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( F `
 k ) ^
2 )  -  ( L ^ 2 ) )  <  e )
10961resqcld 10665 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  e.  RR )
11063resqcld 10665 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  e.  RR )
111109, 110, 73ltsubadd2d 8490 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( ( ( F `  k ) ^ 2 )  -  ( L ^ 2 ) )  <  e  <->  ( ( F `  k ) ^ 2 )  < 
( ( L ^
2 )  +  e ) ) )
112108, 111mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( F `  k ) ^ 2 )  <  ( ( L ^ 2 )  +  e ) )
11360, 112eqbrtrd 4022 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  <  ( ( L ^ 2 )  +  e ) )
11460, 109eqeltrd 2254 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  e.  RR )
115114, 73readdcld 7977 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( G `  k )  +  e )  e.  RR )
11641ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
0  <_  L )
117 le2sq2 10581 . . . . . . . . . 10  |-  ( ( ( L  e.  RR  /\  0  <_  L )  /\  ( ( F `  k )  e.  RR  /\  L  <_  ( F `  k ) ) )  ->  ( L ^
2 )  <_  (
( F `  k
) ^ 2 ) )
11863, 116, 61, 77, 117syl22anc 1239 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <_  ( ( F `  k ) ^ 2 ) )
119118, 60breqtrrd 4028 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <_  ( G `  k ) )
120114, 72ltaddrpd 9717 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( G `  k
)  <  ( ( G `  k )  +  e ) )
121110, 114, 115, 119, 120lelttrd 8072 . . . . . . 7  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( L ^ 2 )  <  ( ( G `  k )  +  e ) )
122113, 121jca 306 . . . . . 6  |-  ( ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  /\  ( ( F `
 k )  < 
( L  +  ( e  /  ( ( F `  1 )  +  L ) ) )  /\  L  < 
( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) ) )  -> 
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) )
123122ex 115 . . . . 5  |-  ( ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( ( F `  k )  <  ( L  +  ( e  /  (
( F `  1
)  +  L ) ) )  /\  L  <  ( ( F `  k )  +  ( e  /  ( ( F `  1 )  +  L ) ) ) )  ->  (
( G `  k
)  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) ) )
124123ralimdva 2544 . . . 4  |-  ( ( ( ph  /\  e  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  <  ( L  +  ( e  / 
( ( F ` 
1 )  +  L
) ) )  /\  L  <  ( ( F `
 k )  +  ( e  /  (
( F `  1
)  +  L ) ) ) )  ->  A. k  e.  ( ZZ>=
`  j ) ( ( G `  k
)  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) ) )
125124reximdva 2579 . . 3  |-  ( (
ph  /\  e  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  <  ( L  +  ( e  /  ( ( F `
 1 )  +  L ) ) )  /\  L  <  (
( F `  k
)  +  ( e  /  ( ( F `
 1 )  +  L ) ) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) ) )
12646, 125mpd 13 . 2  |-  ( (
ph  /\  e  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( G `  k )  <  (
( L ^ 2 )  +  e )  /\  ( L ^
2 )  <  (
( G `  k
)  +  e ) ) )
127126ralrimiva 2550 1  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  < 
( ( G `  k )  +  e ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {csn 3591   class class class wbr 4000    |-> cmpt 4061    X. cxp 4621   -->wf 5208   ` cfv 5212  (class class class)co 5869    e. cmpo 5871   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118    / cdiv 8618   NNcn 8908   2c2 8959   ZZcz 9242   ZZ>=cuz 9517   RR+crp 9640    seqcseq 10431   ^cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  resqrexlemsqa  11017
  Copyright terms: Public domain W3C validator