Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > add4d | Unicode version |
Description: Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addd.1 | |
addd.2 | |
addd.3 | |
add4d.4 |
Ref | Expression |
---|---|
add4d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addd.1 | . 2 | |
2 | addd.2 | . 2 | |
3 | addd.3 | . 2 | |
4 | add4d.4 | . 2 | |
5 | add4 8030 | . 2 | |
6 | 1, 2, 3, 4, 5 | syl22anc 1221 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wcel 2128 (class class class)co 5821 cc 7724 caddc 7729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-addcl 7822 ax-addcom 7826 ax-addass 7828 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rex 2441 df-v 2714 df-un 3106 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-iota 5134 df-fv 5177 df-ov 5824 |
This theorem is referenced by: apadd1 8477 binom3 10528 readd 10762 imadd 10770 max0addsup 11112 bdtri 11132 efi4p 11607 binom4 13267 |
Copyright terms: Public domain | W3C validator |