| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > binom3 | Unicode version | ||
| Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.) |
| Ref | Expression |
|---|---|
| binom3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9170 |
. . . 4
| |
| 2 | 1 | oveq2i 6012 |
. . 3
|
| 3 | addcl 8124 |
. . . 4
| |
| 4 | 2nn0 9386 |
. . . 4
| |
| 5 | expp1 10768 |
. . . 4
| |
| 6 | 3, 4, 5 | sylancl 413 |
. . 3
|
| 7 | 2, 6 | eqtrid 2274 |
. 2
|
| 8 | sqcl 10822 |
. . . . 5
| |
| 9 | 3, 8 | syl 14 |
. . . 4
|
| 10 | simpl 109 |
. . . 4
| |
| 11 | simpr 110 |
. . . 4
| |
| 12 | 9, 10, 11 | adddid 8171 |
. . 3
|
| 13 | binom2 10873 |
. . . . . 6
| |
| 14 | 13 | oveq1d 6016 |
. . . . 5
|
| 15 | sqcl 10822 |
. . . . . . . 8
| |
| 16 | 10, 15 | syl 14 |
. . . . . . 7
|
| 17 | 2cn 9181 |
. . . . . . . 8
| |
| 18 | mulcl 8126 |
. . . . . . . 8
| |
| 19 | mulcl 8126 |
. . . . . . . 8
| |
| 20 | 17, 18, 19 | sylancr 414 |
. . . . . . 7
|
| 21 | 16, 20 | addcld 8166 |
. . . . . 6
|
| 22 | sqcl 10822 |
. . . . . . 7
| |
| 23 | 11, 22 | syl 14 |
. . . . . 6
|
| 24 | 21, 23, 10 | adddird 8172 |
. . . . 5
|
| 25 | 16, 20, 10 | adddird 8172 |
. . . . . . 7
|
| 26 | 1 | oveq2i 6012 |
. . . . . . . . 9
|
| 27 | expp1 10768 |
. . . . . . . . . 10
| |
| 28 | 10, 4, 27 | sylancl 413 |
. . . . . . . . 9
|
| 29 | 26, 28 | eqtrid 2274 |
. . . . . . . 8
|
| 30 | sqval 10819 |
. . . . . . . . . . . . 13
| |
| 31 | 10, 30 | syl 14 |
. . . . . . . . . . . 12
|
| 32 | 31 | oveq1d 6016 |
. . . . . . . . . . 11
|
| 33 | 10, 10, 11 | mul32d 8299 |
. . . . . . . . . . 11
|
| 34 | 32, 33 | eqtrd 2262 |
. . . . . . . . . 10
|
| 35 | 34 | oveq2d 6017 |
. . . . . . . . 9
|
| 36 | 2cnd 9183 |
. . . . . . . . . 10
| |
| 37 | 36, 18, 10 | mulassd 8170 |
. . . . . . . . 9
|
| 38 | 35, 37 | eqtr4d 2265 |
. . . . . . . 8
|
| 39 | 29, 38 | oveq12d 6019 |
. . . . . . 7
|
| 40 | 25, 39 | eqtr4d 2265 |
. . . . . 6
|
| 41 | 23, 10 | mulcomd 8168 |
. . . . . 6
|
| 42 | 40, 41 | oveq12d 6019 |
. . . . 5
|
| 43 | 14, 24, 42 | 3eqtrd 2266 |
. . . 4
|
| 44 | 13 | oveq1d 6016 |
. . . . 5
|
| 45 | 21, 23, 11 | adddird 8172 |
. . . . 5
|
| 46 | sqval 10819 |
. . . . . . . . . . . . . 14
| |
| 47 | 11, 46 | syl 14 |
. . . . . . . . . . . . 13
|
| 48 | 47 | oveq2d 6017 |
. . . . . . . . . . . 12
|
| 49 | 10, 11, 11 | mulassd 8170 |
. . . . . . . . . . . 12
|
| 50 | 48, 49 | eqtr4d 2265 |
. . . . . . . . . . 11
|
| 51 | 50 | oveq2d 6017 |
. . . . . . . . . 10
|
| 52 | 36, 18, 11 | mulassd 8170 |
. . . . . . . . . 10
|
| 53 | 51, 52 | eqtr4d 2265 |
. . . . . . . . 9
|
| 54 | 53 | oveq2d 6017 |
. . . . . . . 8
|
| 55 | 16, 20, 11 | adddird 8172 |
. . . . . . . 8
|
| 56 | 54, 55 | eqtr4d 2265 |
. . . . . . 7
|
| 57 | 1 | oveq2i 6012 |
. . . . . . . 8
|
| 58 | expp1 10768 |
. . . . . . . . 9
| |
| 59 | 11, 4, 58 | sylancl 413 |
. . . . . . . 8
|
| 60 | 57, 59 | eqtrid 2274 |
. . . . . . 7
|
| 61 | 56, 60 | oveq12d 6019 |
. . . . . 6
|
| 62 | 16, 11 | mulcld 8167 |
. . . . . . 7
|
| 63 | 10, 23 | mulcld 8167 |
. . . . . . . 8
|
| 64 | mulcl 8126 |
. . . . . . . 8
| |
| 65 | 17, 63, 64 | sylancr 414 |
. . . . . . 7
|
| 66 | 3nn0 9387 |
. . . . . . . 8
| |
| 67 | expcl 10779 |
. . . . . . . 8
| |
| 68 | 11, 66, 67 | sylancl 413 |
. . . . . . 7
|
| 69 | 62, 65, 68 | addassd 8169 |
. . . . . 6
|
| 70 | 61, 69 | eqtr3d 2264 |
. . . . 5
|
| 71 | 44, 45, 70 | 3eqtrd 2266 |
. . . 4
|
| 72 | 43, 71 | oveq12d 6019 |
. . 3
|
| 73 | expcl 10779 |
. . . . . 6
| |
| 74 | 10, 66, 73 | sylancl 413 |
. . . . 5
|
| 75 | mulcl 8126 |
. . . . . 6
| |
| 76 | 17, 62, 75 | sylancr 414 |
. . . . 5
|
| 77 | 74, 76 | addcld 8166 |
. . . 4
|
| 78 | 65, 68 | addcld 8166 |
. . . 4
|
| 79 | 77, 63, 62, 78 | add4d 8315 |
. . 3
|
| 80 | 12, 72, 79 | 3eqtrd 2266 |
. 2
|
| 81 | 74, 76, 62 | addassd 8169 |
. . . 4
|
| 82 | 1 | oveq1i 6011 |
. . . . . . 7
|
| 83 | 1cnd 8162 |
. . . . . . . 8
| |
| 84 | 36, 83, 62 | adddird 8172 |
. . . . . . 7
|
| 85 | 82, 84 | eqtrid 2274 |
. . . . . 6
|
| 86 | 62 | mulid2d 8165 |
. . . . . . 7
|
| 87 | 86 | oveq2d 6017 |
. . . . . 6
|
| 88 | 85, 87 | eqtrd 2262 |
. . . . 5
|
| 89 | 88 | oveq2d 6017 |
. . . 4
|
| 90 | 81, 89 | eqtr4d 2265 |
. . 3
|
| 91 | 1p2e3 9245 |
. . . . . . . 8
| |
| 92 | 91 | oveq1i 6011 |
. . . . . . 7
|
| 93 | 83, 36, 63 | adddird 8172 |
. . . . . . 7
|
| 94 | 92, 93 | eqtr3id 2276 |
. . . . . 6
|
| 95 | 63 | mulid2d 8165 |
. . . . . . 7
|
| 96 | 95 | oveq1d 6016 |
. . . . . 6
|
| 97 | 94, 96 | eqtrd 2262 |
. . . . 5
|
| 98 | 97 | oveq1d 6016 |
. . . 4
|
| 99 | 63, 65, 68 | addassd 8169 |
. . . 4
|
| 100 | 98, 99 | eqtr2d 2263 |
. . 3
|
| 101 | 90, 100 | oveq12d 6019 |
. 2
|
| 102 | 7, 80, 101 | 3eqtrd 2266 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 df-exp 10761 |
| This theorem is referenced by: binom4 15653 |
| Copyright terms: Public domain | W3C validator |