Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > binom3 | Unicode version |
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.) |
Ref | Expression |
---|---|
binom3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8917 | . . . 4 | |
2 | 1 | oveq2i 5853 | . . 3 |
3 | addcl 7878 | . . . 4 | |
4 | 2nn0 9131 | . . . 4 | |
5 | expp1 10462 | . . . 4 | |
6 | 3, 4, 5 | sylancl 410 | . . 3 |
7 | 2, 6 | syl5eq 2211 | . 2 |
8 | sqcl 10516 | . . . . 5 | |
9 | 3, 8 | syl 14 | . . . 4 |
10 | simpl 108 | . . . 4 | |
11 | simpr 109 | . . . 4 | |
12 | 9, 10, 11 | adddid 7923 | . . 3 |
13 | binom2 10566 | . . . . . 6 | |
14 | 13 | oveq1d 5857 | . . . . 5 |
15 | sqcl 10516 | . . . . . . . 8 | |
16 | 10, 15 | syl 14 | . . . . . . 7 |
17 | 2cn 8928 | . . . . . . . 8 | |
18 | mulcl 7880 | . . . . . . . 8 | |
19 | mulcl 7880 | . . . . . . . 8 | |
20 | 17, 18, 19 | sylancr 411 | . . . . . . 7 |
21 | 16, 20 | addcld 7918 | . . . . . 6 |
22 | sqcl 10516 | . . . . . . 7 | |
23 | 11, 22 | syl 14 | . . . . . 6 |
24 | 21, 23, 10 | adddird 7924 | . . . . 5 |
25 | 16, 20, 10 | adddird 7924 | . . . . . . 7 |
26 | 1 | oveq2i 5853 | . . . . . . . . 9 |
27 | expp1 10462 | . . . . . . . . . 10 | |
28 | 10, 4, 27 | sylancl 410 | . . . . . . . . 9 |
29 | 26, 28 | syl5eq 2211 | . . . . . . . 8 |
30 | sqval 10513 | . . . . . . . . . . . . 13 | |
31 | 10, 30 | syl 14 | . . . . . . . . . . . 12 |
32 | 31 | oveq1d 5857 | . . . . . . . . . . 11 |
33 | 10, 10, 11 | mul32d 8051 | . . . . . . . . . . 11 |
34 | 32, 33 | eqtrd 2198 | . . . . . . . . . 10 |
35 | 34 | oveq2d 5858 | . . . . . . . . 9 |
36 | 2cnd 8930 | . . . . . . . . . 10 | |
37 | 36, 18, 10 | mulassd 7922 | . . . . . . . . 9 |
38 | 35, 37 | eqtr4d 2201 | . . . . . . . 8 |
39 | 29, 38 | oveq12d 5860 | . . . . . . 7 |
40 | 25, 39 | eqtr4d 2201 | . . . . . 6 |
41 | 23, 10 | mulcomd 7920 | . . . . . 6 |
42 | 40, 41 | oveq12d 5860 | . . . . 5 |
43 | 14, 24, 42 | 3eqtrd 2202 | . . . 4 |
44 | 13 | oveq1d 5857 | . . . . 5 |
45 | 21, 23, 11 | adddird 7924 | . . . . 5 |
46 | sqval 10513 | . . . . . . . . . . . . . 14 | |
47 | 11, 46 | syl 14 | . . . . . . . . . . . . 13 |
48 | 47 | oveq2d 5858 | . . . . . . . . . . . 12 |
49 | 10, 11, 11 | mulassd 7922 | . . . . . . . . . . . 12 |
50 | 48, 49 | eqtr4d 2201 | . . . . . . . . . . 11 |
51 | 50 | oveq2d 5858 | . . . . . . . . . 10 |
52 | 36, 18, 11 | mulassd 7922 | . . . . . . . . . 10 |
53 | 51, 52 | eqtr4d 2201 | . . . . . . . . 9 |
54 | 53 | oveq2d 5858 | . . . . . . . 8 |
55 | 16, 20, 11 | adddird 7924 | . . . . . . . 8 |
56 | 54, 55 | eqtr4d 2201 | . . . . . . 7 |
57 | 1 | oveq2i 5853 | . . . . . . . 8 |
58 | expp1 10462 | . . . . . . . . 9 | |
59 | 11, 4, 58 | sylancl 410 | . . . . . . . 8 |
60 | 57, 59 | syl5eq 2211 | . . . . . . 7 |
61 | 56, 60 | oveq12d 5860 | . . . . . 6 |
62 | 16, 11 | mulcld 7919 | . . . . . . 7 |
63 | 10, 23 | mulcld 7919 | . . . . . . . 8 |
64 | mulcl 7880 | . . . . . . . 8 | |
65 | 17, 63, 64 | sylancr 411 | . . . . . . 7 |
66 | 3nn0 9132 | . . . . . . . 8 | |
67 | expcl 10473 | . . . . . . . 8 | |
68 | 11, 66, 67 | sylancl 410 | . . . . . . 7 |
69 | 62, 65, 68 | addassd 7921 | . . . . . 6 |
70 | 61, 69 | eqtr3d 2200 | . . . . 5 |
71 | 44, 45, 70 | 3eqtrd 2202 | . . . 4 |
72 | 43, 71 | oveq12d 5860 | . . 3 |
73 | expcl 10473 | . . . . . 6 | |
74 | 10, 66, 73 | sylancl 410 | . . . . 5 |
75 | mulcl 7880 | . . . . . 6 | |
76 | 17, 62, 75 | sylancr 411 | . . . . 5 |
77 | 74, 76 | addcld 7918 | . . . 4 |
78 | 65, 68 | addcld 7918 | . . . 4 |
79 | 77, 63, 62, 78 | add4d 8067 | . . 3 |
80 | 12, 72, 79 | 3eqtrd 2202 | . 2 |
81 | 74, 76, 62 | addassd 7921 | . . . 4 |
82 | 1 | oveq1i 5852 | . . . . . . 7 |
83 | 1cnd 7915 | . . . . . . . 8 | |
84 | 36, 83, 62 | adddird 7924 | . . . . . . 7 |
85 | 82, 84 | syl5eq 2211 | . . . . . 6 |
86 | 62 | mulid2d 7917 | . . . . . . 7 |
87 | 86 | oveq2d 5858 | . . . . . 6 |
88 | 85, 87 | eqtrd 2198 | . . . . 5 |
89 | 88 | oveq2d 5858 | . . . 4 |
90 | 81, 89 | eqtr4d 2201 | . . 3 |
91 | 1p2e3 8991 | . . . . . . . 8 | |
92 | 91 | oveq1i 5852 | . . . . . . 7 |
93 | 83, 36, 63 | adddird 7924 | . . . . . . 7 |
94 | 92, 93 | eqtr3id 2213 | . . . . . 6 |
95 | 63 | mulid2d 7917 | . . . . . . 7 |
96 | 95 | oveq1d 5857 | . . . . . 6 |
97 | 94, 96 | eqtrd 2198 | . . . . 5 |
98 | 97 | oveq1d 5857 | . . . 4 |
99 | 63, 65, 68 | addassd 7921 | . . . 4 |
100 | 98, 99 | eqtr2d 2199 | . . 3 |
101 | 90, 100 | oveq12d 5860 | . 2 |
102 | 7, 80, 101 | 3eqtrd 2202 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 c1 7754 caddc 7756 cmul 7758 c2 8908 c3 8909 cn0 9114 cexp 10454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 |
This theorem is referenced by: binom4 13537 |
Copyright terms: Public domain | W3C validator |