ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom3 Unicode version

Theorem binom3 10766
Description: The cube of a binomial. (Contributed by Mario Carneiro, 24-Apr-2015.)
Assertion
Ref Expression
binom3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )

Proof of Theorem binom3
StepHypRef Expression
1 df-3 9067 . . . 4  |-  3  =  ( 2  +  1 )
21oveq2i 5936 . . 3  |-  ( ( A  +  B ) ^ 3 )  =  ( ( A  +  B ) ^ (
2  +  1 ) )
3 addcl 8021 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
4 2nn0 9283 . . . 4  |-  2  e.  NN0
5 expp1 10655 . . . 4  |-  ( ( ( A  +  B
)  e.  CC  /\  2  e.  NN0 )  -> 
( ( A  +  B ) ^ (
2  +  1 ) )  =  ( ( ( A  +  B
) ^ 2 )  x.  ( A  +  B ) ) )
63, 4, 5sylancl 413 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ (
2  +  1 ) )  =  ( ( ( A  +  B
) ^ 2 )  x.  ( A  +  B ) ) )
72, 6eqtrid 2241 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A  +  B
) ^ 2 )  x.  ( A  +  B ) ) )
8 sqcl 10709 . . . . 5  |-  ( ( A  +  B )  e.  CC  ->  (
( A  +  B
) ^ 2 )  e.  CC )
93, 8syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  e.  CC )
10 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
11 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
129, 10, 11adddid 8068 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  ( A  +  B )
)  =  ( ( ( ( A  +  B ) ^ 2 )  x.  A )  +  ( ( ( A  +  B ) ^ 2 )  x.  B ) ) )
13 binom2 10760 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
1413oveq1d 5940 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  A
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  x.  A ) )
15 sqcl 10709 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
1610, 15syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  e.  CC )
17 2cn 9078 . . . . . . . 8  |-  2  e.  CC
18 mulcl 8023 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
19 mulcl 8023 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( A  x.  B
)  e.  CC )  ->  ( 2  x.  ( A  x.  B
) )  e.  CC )
2017, 18, 19sylancr 414 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  e.  CC )
2116, 20addcld 8063 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  e.  CC )
22 sqcl 10709 . . . . . . 7  |-  ( B  e.  CC  ->  ( B ^ 2 )  e.  CC )
2311, 22syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  e.  CC )
2421, 23, 10adddird 8069 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  x.  A
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  A )  +  ( ( B ^ 2 )  x.  A ) ) )
2516, 20, 10adddird 8069 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  x.  A
)  =  ( ( ( A ^ 2 )  x.  A )  +  ( ( 2  x.  ( A  x.  B ) )  x.  A ) ) )
261oveq2i 5936 . . . . . . . . 9  |-  ( A ^ 3 )  =  ( A ^ (
2  +  1 ) )
27 expp1 10655 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
2810, 4, 27sylancl 413 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
2926, 28eqtrid 2241 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  =  ( ( A ^ 2 )  x.  A ) )
30 sqval 10706 . . . . . . . . . . . . 13  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
3110, 30syl 14 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
3231oveq1d 5940 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  =  ( ( A  x.  A )  x.  B ) )
3310, 10, 11mul32d 8196 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  x.  B
)  =  ( ( A  x.  B )  x.  A ) )
3432, 33eqtrd 2229 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  =  ( ( A  x.  B )  x.  A ) )
3534oveq2d 5941 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( A ^ 2 )  x.  B ) )  =  ( 2  x.  ( ( A  x.  B )  x.  A ) ) )
36 2cnd 9080 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  2  e.  CC )
3736, 18, 10mulassd 8067 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( A  x.  B
) )  x.  A
)  =  ( 2  x.  ( ( A  x.  B )  x.  A ) ) )
3835, 37eqtr4d 2232 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( A  x.  B ) )  x.  A ) )
3929, 38oveq12d 5943 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  =  ( ( ( A ^ 2 )  x.  A )  +  ( ( 2  x.  ( A  x.  B ) )  x.  A ) ) )
4025, 39eqtr4d 2232 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  x.  A
)  =  ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) ) )
4123, 10mulcomd 8065 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( B ^
2 )  x.  A
)  =  ( A  x.  ( B ^
2 ) ) )
4240, 41oveq12d 5943 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  x.  A )  +  ( ( B ^ 2 )  x.  A ) )  =  ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( A  x.  ( B ^ 2 ) ) ) )
4314, 24, 423eqtrd 2233 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  A
)  =  ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( A  x.  ( B ^ 2 ) ) ) )
4413oveq1d 5940 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  B
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^ 2 ) )  x.  B ) )
4521, 23, 11adddird 8069 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  +  ( B ^ 2 ) )  x.  B
)  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  B )  +  ( ( B ^ 2 )  x.  B ) ) )
46 sqval 10706 . . . . . . . . . . . . . 14  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
4711, 46syl 14 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
4847oveq2d 5941 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  =  ( A  x.  ( B  x.  B
) ) )
4910, 11, 11mulassd 8067 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  B )  x.  B
)  =  ( A  x.  ( B  x.  B ) ) )
5048, 49eqtr4d 2232 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  =  ( ( A  x.  B )  x.  B ) )
5150oveq2d 5941 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( 2  x.  ( ( A  x.  B )  x.  B ) ) )
5236, 18, 11mulassd 8067 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( A  x.  B
) )  x.  B
)  =  ( 2  x.  ( ( A  x.  B )  x.  B ) ) )
5351, 52eqtr4d 2232 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( 2  x.  ( A  x.  B ) )  x.  B ) )
5453oveq2d 5941 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^
2 ) ) ) )  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  B ) )  x.  B ) ) )
5516, 20, 11adddird 8069 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  x.  B
)  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  B ) )  x.  B ) ) )
5654, 55eqtr4d 2232 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^
2 ) ) ) )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  B ) )
571oveq2i 5936 . . . . . . . 8  |-  ( B ^ 3 )  =  ( B ^ (
2  +  1 ) )
58 expp1 10655 . . . . . . . . 9  |-  ( ( B  e.  CC  /\  2  e.  NN0 )  -> 
( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
5911, 4, 58sylancl 413 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ (
2  +  1 ) )  =  ( ( B ^ 2 )  x.  B ) )
6057, 59eqtrid 2241 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  =  ( ( B ^ 2 )  x.  B ) )
6156, 60oveq12d 5943 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) )  =  ( ( ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  x.  B )  +  ( ( B ^ 2 )  x.  B ) ) )
6216, 11mulcld 8064 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  x.  B
)  e.  CC )
6310, 23mulcld 8064 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  ( B ^ 2 ) )  e.  CC )
64 mulcl 8023 . . . . . . . 8  |-  ( ( 2  e.  CC  /\  ( A  x.  ( B ^ 2 ) )  e.  CC )  -> 
( 2  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
6517, 63, 64sylancr 414 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  e.  CC )
66 3nn0 9284 . . . . . . . 8  |-  3  e.  NN0
67 expcl 10666 . . . . . . . 8  |-  ( ( B  e.  CC  /\  3  e.  NN0 )  -> 
( B ^ 3 )  e.  CC )
6811, 66, 67sylancl 413 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 3 )  e.  CC )
6962, 65, 68addassd 8066 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  x.  B )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) )  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
7061, 69eqtr3d 2231 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B
) ) )  x.  B )  +  ( ( B ^ 2 )  x.  B ) )  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
7144, 45, 703eqtrd 2233 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  B
)  =  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
7243, 71oveq12d 5943 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  +  B ) ^ 2 )  x.  A )  +  ( ( ( A  +  B ) ^ 2 )  x.  B ) )  =  ( ( ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( A  x.  ( B ^
2 ) ) )  +  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) ) )
73 expcl 10666 . . . . . 6  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
7410, 66, 73sylancl 413 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 3 )  e.  CC )
75 mulcl 8023 . . . . . 6  |-  ( ( 2  e.  CC  /\  ( ( A ^
2 )  x.  B
)  e.  CC )  ->  ( 2  x.  ( ( A ^
2 )  x.  B
) )  e.  CC )
7617, 62, 75sylancr 414 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  (
( A ^ 2 )  x.  B ) )  e.  CC )
7774, 76addcld 8063 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  e.  CC )
7865, 68addcld 8063 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  e.  CC )
7977, 63, 62, 78add4d 8212 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( A  x.  ( B ^ 2 ) ) )  +  ( ( ( A ^ 2 )  x.  B )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )  =  ( ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( A ^
2 )  x.  B
) )  +  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) ) )
8012, 72, 793eqtrd 2233 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B ) ^
2 )  x.  ( A  +  B )
)  =  ( ( ( ( A ^
3 )  +  ( 2  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( A ^ 2 )  x.  B ) )  +  ( ( A  x.  ( B ^
2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) ) )
8174, 76, 62addassd 8066 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 2  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( A ^ 2 )  x.  B ) )  =  ( ( A ^ 3 )  +  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^
2 )  x.  B
) ) ) )
821oveq1i 5935 . . . . . . 7  |-  ( 3  x.  ( ( A ^ 2 )  x.  B ) )  =  ( ( 2  +  1 )  x.  (
( A ^ 2 )  x.  B ) )
83 1cnd 8059 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  1  e.  CC )
8436, 83, 62adddird 8069 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  +  1 )  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( 1  x.  ( ( A ^
2 )  x.  B
) ) ) )
8582, 84eqtrid 2241 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( 1  x.  ( ( A ^
2 )  x.  B
) ) ) )
8662mulid2d 8062 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( A ^ 2 )  x.  B ) )
8786oveq2d 5941 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 2  x.  ( ( A ^
2 )  x.  B
) )  +  ( 1  x.  ( ( A ^ 2 )  x.  B ) ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^ 2 )  x.  B ) ) )
8885, 87eqtrd 2229 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  (
( A ^ 2 )  x.  B ) )  =  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^ 2 )  x.  B ) ) )
8988oveq2d 5941 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  =  ( ( A ^ 3 )  +  ( ( 2  x.  ( ( A ^ 2 )  x.  B ) )  +  ( ( A ^
2 )  x.  B
) ) ) )
9081, 89eqtr4d 2232 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 3 )  +  ( 2  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( A ^ 2 )  x.  B ) )  =  ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^
2 )  x.  B
) ) ) )
91 1p2e3 9142 . . . . . . . 8  |-  ( 1  +  2 )  =  3
9291oveq1i 5935 . . . . . . 7  |-  ( ( 1  +  2 )  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( 3  x.  ( A  x.  ( B ^
2 ) ) )
9383, 36, 63adddird 8069 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  2 )  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
2 ) ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9492, 93eqtr3id 2243 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( 1  x.  ( A  x.  ( B ^
2 ) ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9563mulid2d 8062 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( A  x.  ( B ^
2 ) ) )
9695oveq1d 5940 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  =  ( ( A  x.  ( B ^ 2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9794, 96eqtrd 2229 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  =  ( ( A  x.  ( B ^ 2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) ) )
9897oveq1d 5940 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) )  =  ( ( ( A  x.  ( B ^ 2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) ) )
9963, 65, 68addassd 8066 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  ( B ^
2 ) )  +  ( 2  x.  ( A  x.  ( B ^ 2 ) ) ) )  +  ( B ^ 3 ) )  =  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
10098, 99eqtr2d 2230 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^
2 ) ) )  +  ( B ^
3 ) ) )  =  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) )
10190, 100oveq12d 5943 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A ^ 3 )  +  ( 2  x.  ( ( A ^
2 )  x.  B
) ) )  +  ( ( A ^
2 )  x.  B
) )  +  ( ( A  x.  ( B ^ 2 ) )  +  ( ( 2  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )  =  ( ( ( A ^ 3 )  +  ( 3  x.  (
( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
1027, 80, 1013eqtrd 2233 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 3 )  =  ( ( ( A ^ 3 )  +  ( 3  x.  ( ( A ^ 2 )  x.  B ) ) )  +  ( ( 3  x.  ( A  x.  ( B ^ 2 ) ) )  +  ( B ^ 3 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894   1c1 7897    + caddc 7899    x. cmul 7901   2c2 9058   3c3 9059   NN0cn0 9266   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-n0 9267  df-z 9344  df-uz 9619  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  binom4  15299
  Copyright terms: Public domain W3C validator