ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imadd Unicode version

Theorem imadd 10681
Description: Imaginary part distributes over addition. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
imadd  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B )
)  =  ( ( Im `  A )  +  ( Im `  B ) ) )

Proof of Theorem imadd
StepHypRef Expression
1 recl 10657 . . . . . . 7  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
21adantr 274 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
32recnd 7818 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
4 ax-icn 7739 . . . . . 6  |-  _i  e.  CC
5 imcl 10658 . . . . . . . 8  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
65adantr 274 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
76recnd 7818 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
8 mulcl 7771 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
94, 7, 8sylancr 411 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
10 recl 10657 . . . . . . 7  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1110adantl 275 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
1211recnd 7818 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
13 imcl 10658 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
1413adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1514recnd 7818 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
16 mulcl 7771 . . . . . 6  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
174, 15, 16sylancr 411 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
183, 9, 12, 17add4d 7955 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  +  ( ( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  +  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  B )
) ) ) )
19 replim 10663 . . . . 5  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
20 replim 10663 . . . . 5  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
2119, 20oveqan12d 5801 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  +  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) ) )
224a1i 9 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
2322, 7, 15adddid 7814 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Im `  A
)  +  ( Im
`  B ) ) )  =  ( ( _i  x.  ( Im
`  A ) )  +  ( _i  x.  ( Im `  B ) ) ) )
2423oveq2d 5798 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( Re `  B
) )  +  ( _i  x.  ( ( Im `  A )  +  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  +  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  +  ( _i  x.  (
Im `  B )
) ) ) )
2518, 21, 243eqtr4d 2183 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( ( ( Re `  A
)  +  ( Re
`  B ) )  +  ( _i  x.  ( ( Im `  A )  +  ( Im `  B ) ) ) ) )
2625fveq2d 5433 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B )
)  =  ( Im
`  ( ( ( Re `  A )  +  ( Re `  B ) )  +  ( _i  x.  (
( Im `  A
)  +  ( Im
`  B ) ) ) ) ) )
27 readdcl 7770 . . . 4  |-  ( ( ( Re `  A
)  e.  RR  /\  ( Re `  B )  e.  RR )  -> 
( ( Re `  A )  +  ( Re `  B ) )  e.  RR )
281, 10, 27syl2an 287 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  +  ( Re `  B ) )  e.  RR )
29 readdcl 7770 . . . 4  |-  ( ( ( Im `  A
)  e.  RR  /\  ( Im `  B )  e.  RR )  -> 
( ( Im `  A )  +  ( Im `  B ) )  e.  RR )
305, 13, 29syl2an 287 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  +  ( Im `  B ) )  e.  RR )
31 crim 10662 . . 3  |-  ( ( ( ( Re `  A )  +  ( Re `  B ) )  e.  RR  /\  ( ( Im `  A )  +  ( Im `  B ) )  e.  RR )  ->  ( Im `  ( ( ( Re
`  A )  +  ( Re `  B
) )  +  ( _i  x.  ( ( Im `  A )  +  ( Im `  B ) ) ) ) )  =  ( ( Im `  A
)  +  ( Im
`  B ) ) )
3228, 30, 31syl2anc 409 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
( ( Re `  A )  +  ( Re `  B ) )  +  ( _i  x.  ( ( Im
`  A )  +  ( Im `  B
) ) ) ) )  =  ( ( Im `  A )  +  ( Im `  B ) ) )
3326, 32eqtrd 2173 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  +  B )
)  =  ( ( Im `  A )  +  ( Im `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   _ici 7646    + caddc 7647    x. cmul 7649   Recre 10644   Imcim 10645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-2 8803  df-cj 10646  df-re 10647  df-im 10648
This theorem is referenced by:  imsub  10682  cjadd  10688  imaddi  10733  imaddd  10764  fsumim  11274
  Copyright terms: Public domain W3C validator