ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  max0addsup Unicode version

Theorem max0addsup 11230
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
Assertion
Ref Expression
max0addsup  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( abs `  A
) )

Proof of Theorem max0addsup
StepHypRef Expression
1 0re 7959 . . . . . 6  |-  0  e.  RR
2 maxabs 11220 . . . . . 6  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( ( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  /  2
) )
31, 2mpan2 425 . . . . 5  |-  ( A  e.  RR  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( ( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  / 
2 ) )
4 recn 7946 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
54addid1d 8108 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
64subid1d 8259 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  0 )  =  A )
76fveq2d 5521 . . . . . . 7  |-  ( A  e.  RR  ->  ( abs `  ( A  - 
0 ) )  =  ( abs `  A
) )
85, 7oveq12d 5895 . . . . . 6  |-  ( A  e.  RR  ->  (
( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  =  ( A  +  ( abs `  A ) ) )
98oveq1d 5892 . . . . 5  |-  ( A  e.  RR  ->  (
( ( A  + 
0 )  +  ( abs `  ( A  -  0 ) ) )  /  2 )  =  ( ( A  +  ( abs `  A
) )  /  2
) )
103, 9eqtrd 2210 . . . 4  |-  ( A  e.  RR  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( A  +  ( abs `  A ) )  / 
2 ) )
11 renegcl 8220 . . . . . 6  |-  ( A  e.  RR  ->  -u A  e.  RR )
12 maxabs 11220 . . . . . 6  |-  ( (
-u A  e.  RR  /\  0  e.  RR )  ->  sup ( { -u A ,  0 } ,  RR ,  <  )  =  ( ( (
-u A  +  0 )  +  ( abs `  ( -u A  - 
0 ) ) )  /  2 ) )
1311, 1, 12sylancl 413 . . . . 5  |-  ( A  e.  RR  ->  sup ( { -u A , 
0 } ,  RR ,  <  )  =  ( ( ( -u A  +  0 )  +  ( abs `  ( -u A  -  0 ) ) )  /  2
) )
1411recnd 7988 . . . . . . . 8  |-  ( A  e.  RR  ->  -u A  e.  CC )
1514addid1d 8108 . . . . . . 7  |-  ( A  e.  RR  ->  ( -u A  +  0 )  =  -u A )
1614subid1d 8259 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( -u A  -  0 )  =  -u A )
1716fveq2d 5521 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  ( -u A  -  0 ) )  =  ( abs `  -u A
) )
184absnegd 11200 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  -u A )  =  ( abs `  A
) )
1917, 18eqtrd 2210 . . . . . . 7  |-  ( A  e.  RR  ->  ( abs `  ( -u A  -  0 ) )  =  ( abs `  A
) )
2015, 19oveq12d 5895 . . . . . 6  |-  ( A  e.  RR  ->  (
( -u A  +  0 )  +  ( abs `  ( -u A  - 
0 ) ) )  =  ( -u A  +  ( abs `  A
) ) )
2120oveq1d 5892 . . . . 5  |-  ( A  e.  RR  ->  (
( ( -u A  +  0 )  +  ( abs `  ( -u A  -  0 ) ) )  /  2
)  =  ( (
-u A  +  ( abs `  A ) )  /  2 ) )
2213, 21eqtrd 2210 . . . 4  |-  ( A  e.  RR  ->  sup ( { -u A , 
0 } ,  RR ,  <  )  =  ( ( -u A  +  ( abs `  A ) )  /  2 ) )
2310, 22oveq12d 5895 . . 3  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( ( ( A  +  ( abs `  A
) )  /  2
)  +  ( (
-u A  +  ( abs `  A ) )  /  2 ) ) )
244abscld 11192 . . . . . 6  |-  ( A  e.  RR  ->  ( abs `  A )  e.  RR )
2524recnd 7988 . . . . 5  |-  ( A  e.  RR  ->  ( abs `  A )  e.  CC )
264, 25addcld 7979 . . . 4  |-  ( A  e.  RR  ->  ( A  +  ( abs `  A ) )  e.  CC )
2714, 25addcld 7979 . . . 4  |-  ( A  e.  RR  ->  ( -u A  +  ( abs `  A ) )  e.  CC )
28 2cnd 8994 . . . 4  |-  ( A  e.  RR  ->  2  e.  CC )
29 2ap0 9014 . . . . 5  |-  2 #  0
3029a1i 9 . . . 4  |-  ( A  e.  RR  ->  2 #  0 )
3126, 27, 28, 30divdirapd 8788 . . 3  |-  ( A  e.  RR  ->  (
( ( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  /  2 )  =  ( ( ( A  +  ( abs `  A
) )  /  2
)  +  ( (
-u A  +  ( abs `  A ) )  /  2 ) ) )
324, 25, 14, 25add4d 8128 . . . . 5  |-  ( A  e.  RR  ->  (
( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  =  ( ( A  +  -u A )  +  ( ( abs `  A
)  +  ( abs `  A ) ) ) )
334negidd 8260 . . . . . 6  |-  ( A  e.  RR  ->  ( A  +  -u A )  =  0 )
3433oveq1d 5892 . . . . 5  |-  ( A  e.  RR  ->  (
( A  +  -u A )  +  ( ( abs `  A
)  +  ( abs `  A ) ) )  =  ( 0  +  ( ( abs `  A
)  +  ( abs `  A ) ) ) )
3525, 25addcld 7979 . . . . . 6  |-  ( A  e.  RR  ->  (
( abs `  A
)  +  ( abs `  A ) )  e.  CC )
3635addid2d 8109 . . . . 5  |-  ( A  e.  RR  ->  (
0  +  ( ( abs `  A )  +  ( abs `  A
) ) )  =  ( ( abs `  A
)  +  ( abs `  A ) ) )
3732, 34, 363eqtrd 2214 . . . 4  |-  ( A  e.  RR  ->  (
( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  =  ( ( abs `  A )  +  ( abs `  A ) ) )
3837oveq1d 5892 . . 3  |-  ( A  e.  RR  ->  (
( ( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  /  2 )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
3923, 31, 383eqtr2d 2216 . 2  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
40252timesd 9163 . . 3  |-  ( A  e.  RR  ->  (
2  x.  ( abs `  A ) )  =  ( ( abs `  A
)  +  ( abs `  A ) ) )
4140oveq1d 5892 . 2  |-  ( A  e.  RR  ->  (
( 2  x.  ( abs `  A ) )  /  2 )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
4225, 28, 30divcanap3d 8754 . 2  |-  ( A  e.  RR  ->  (
( 2  x.  ( abs `  A ) )  /  2 )  =  ( abs `  A
) )
4339, 41, 423eqtr2d 2216 1  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( abs `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148   {cpr 3595   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   supcsup 6983   RRcr 7812   0cc0 7813    + caddc 7816    x. cmul 7818    < clt 7994    - cmin 8130   -ucneg 8131   # cap 8540    / cdiv 8631   2c2 8972   abscabs 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-sup 6985  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator