ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  max0addsup Unicode version

Theorem max0addsup 11023
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
Assertion
Ref Expression
max0addsup  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( abs `  A
) )

Proof of Theorem max0addsup
StepHypRef Expression
1 0re 7790 . . . . . 6  |-  0  e.  RR
2 maxabs 11013 . . . . . 6  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( ( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  /  2
) )
31, 2mpan2 422 . . . . 5  |-  ( A  e.  RR  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( ( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  / 
2 ) )
4 recn 7777 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
54addid1d 7935 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
64subid1d 8086 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  0 )  =  A )
76fveq2d 5433 . . . . . . 7  |-  ( A  e.  RR  ->  ( abs `  ( A  - 
0 ) )  =  ( abs `  A
) )
85, 7oveq12d 5800 . . . . . 6  |-  ( A  e.  RR  ->  (
( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  =  ( A  +  ( abs `  A ) ) )
98oveq1d 5797 . . . . 5  |-  ( A  e.  RR  ->  (
( ( A  + 
0 )  +  ( abs `  ( A  -  0 ) ) )  /  2 )  =  ( ( A  +  ( abs `  A
) )  /  2
) )
103, 9eqtrd 2173 . . . 4  |-  ( A  e.  RR  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( A  +  ( abs `  A ) )  / 
2 ) )
11 renegcl 8047 . . . . . 6  |-  ( A  e.  RR  ->  -u A  e.  RR )
12 maxabs 11013 . . . . . 6  |-  ( (
-u A  e.  RR  /\  0  e.  RR )  ->  sup ( { -u A ,  0 } ,  RR ,  <  )  =  ( ( (
-u A  +  0 )  +  ( abs `  ( -u A  - 
0 ) ) )  /  2 ) )
1311, 1, 12sylancl 410 . . . . 5  |-  ( A  e.  RR  ->  sup ( { -u A , 
0 } ,  RR ,  <  )  =  ( ( ( -u A  +  0 )  +  ( abs `  ( -u A  -  0 ) ) )  /  2
) )
1411recnd 7818 . . . . . . . 8  |-  ( A  e.  RR  ->  -u A  e.  CC )
1514addid1d 7935 . . . . . . 7  |-  ( A  e.  RR  ->  ( -u A  +  0 )  =  -u A )
1614subid1d 8086 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( -u A  -  0 )  =  -u A )
1716fveq2d 5433 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  ( -u A  -  0 ) )  =  ( abs `  -u A
) )
184absnegd 10993 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  -u A )  =  ( abs `  A
) )
1917, 18eqtrd 2173 . . . . . . 7  |-  ( A  e.  RR  ->  ( abs `  ( -u A  -  0 ) )  =  ( abs `  A
) )
2015, 19oveq12d 5800 . . . . . 6  |-  ( A  e.  RR  ->  (
( -u A  +  0 )  +  ( abs `  ( -u A  - 
0 ) ) )  =  ( -u A  +  ( abs `  A
) ) )
2120oveq1d 5797 . . . . 5  |-  ( A  e.  RR  ->  (
( ( -u A  +  0 )  +  ( abs `  ( -u A  -  0 ) ) )  /  2
)  =  ( (
-u A  +  ( abs `  A ) )  /  2 ) )
2213, 21eqtrd 2173 . . . 4  |-  ( A  e.  RR  ->  sup ( { -u A , 
0 } ,  RR ,  <  )  =  ( ( -u A  +  ( abs `  A ) )  /  2 ) )
2310, 22oveq12d 5800 . . 3  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( ( ( A  +  ( abs `  A
) )  /  2
)  +  ( (
-u A  +  ( abs `  A ) )  /  2 ) ) )
244abscld 10985 . . . . . 6  |-  ( A  e.  RR  ->  ( abs `  A )  e.  RR )
2524recnd 7818 . . . . 5  |-  ( A  e.  RR  ->  ( abs `  A )  e.  CC )
264, 25addcld 7809 . . . 4  |-  ( A  e.  RR  ->  ( A  +  ( abs `  A ) )  e.  CC )
2714, 25addcld 7809 . . . 4  |-  ( A  e.  RR  ->  ( -u A  +  ( abs `  A ) )  e.  CC )
28 2cnd 8817 . . . 4  |-  ( A  e.  RR  ->  2  e.  CC )
29 2ap0 8837 . . . . 5  |-  2 #  0
3029a1i 9 . . . 4  |-  ( A  e.  RR  ->  2 #  0 )
3126, 27, 28, 30divdirapd 8613 . . 3  |-  ( A  e.  RR  ->  (
( ( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  /  2 )  =  ( ( ( A  +  ( abs `  A
) )  /  2
)  +  ( (
-u A  +  ( abs `  A ) )  /  2 ) ) )
324, 25, 14, 25add4d 7955 . . . . 5  |-  ( A  e.  RR  ->  (
( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  =  ( ( A  +  -u A )  +  ( ( abs `  A
)  +  ( abs `  A ) ) ) )
334negidd 8087 . . . . . 6  |-  ( A  e.  RR  ->  ( A  +  -u A )  =  0 )
3433oveq1d 5797 . . . . 5  |-  ( A  e.  RR  ->  (
( A  +  -u A )  +  ( ( abs `  A
)  +  ( abs `  A ) ) )  =  ( 0  +  ( ( abs `  A
)  +  ( abs `  A ) ) ) )
3525, 25addcld 7809 . . . . . 6  |-  ( A  e.  RR  ->  (
( abs `  A
)  +  ( abs `  A ) )  e.  CC )
3635addid2d 7936 . . . . 5  |-  ( A  e.  RR  ->  (
0  +  ( ( abs `  A )  +  ( abs `  A
) ) )  =  ( ( abs `  A
)  +  ( abs `  A ) ) )
3732, 34, 363eqtrd 2177 . . . 4  |-  ( A  e.  RR  ->  (
( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  =  ( ( abs `  A )  +  ( abs `  A ) ) )
3837oveq1d 5797 . . 3  |-  ( A  e.  RR  ->  (
( ( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  /  2 )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
3923, 31, 383eqtr2d 2179 . 2  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
40252timesd 8986 . . 3  |-  ( A  e.  RR  ->  (
2  x.  ( abs `  A ) )  =  ( ( abs `  A
)  +  ( abs `  A ) ) )
4140oveq1d 5797 . 2  |-  ( A  e.  RR  ->  (
( 2  x.  ( abs `  A ) )  /  2 )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
4225, 28, 30divcanap3d 8579 . 2  |-  ( A  e.  RR  ->  (
( 2  x.  ( abs `  A ) )  /  2 )  =  ( abs `  A
) )
4339, 41, 423eqtr2d 2179 1  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( abs `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 1481   {cpr 3533   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   supcsup 6877   RRcr 7643   0cc0 7644    + caddc 7647    x. cmul 7649    < clt 7824    - cmin 7957   -ucneg 7958   # cap 8367    / cdiv 8456   2c2 8795   abscabs 10801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator