ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  max0addsup Unicode version

Theorem max0addsup 11183
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
Assertion
Ref Expression
max0addsup  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( abs `  A
) )

Proof of Theorem max0addsup
StepHypRef Expression
1 0re 7920 . . . . . 6  |-  0  e.  RR
2 maxabs 11173 . . . . . 6  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( ( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  /  2
) )
31, 2mpan2 423 . . . . 5  |-  ( A  e.  RR  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( ( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  / 
2 ) )
4 recn 7907 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
54addid1d 8068 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
64subid1d 8219 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  0 )  =  A )
76fveq2d 5500 . . . . . . 7  |-  ( A  e.  RR  ->  ( abs `  ( A  - 
0 ) )  =  ( abs `  A
) )
85, 7oveq12d 5871 . . . . . 6  |-  ( A  e.  RR  ->  (
( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  =  ( A  +  ( abs `  A ) ) )
98oveq1d 5868 . . . . 5  |-  ( A  e.  RR  ->  (
( ( A  + 
0 )  +  ( abs `  ( A  -  0 ) ) )  /  2 )  =  ( ( A  +  ( abs `  A
) )  /  2
) )
103, 9eqtrd 2203 . . . 4  |-  ( A  e.  RR  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( A  +  ( abs `  A ) )  / 
2 ) )
11 renegcl 8180 . . . . . 6  |-  ( A  e.  RR  ->  -u A  e.  RR )
12 maxabs 11173 . . . . . 6  |-  ( (
-u A  e.  RR  /\  0  e.  RR )  ->  sup ( { -u A ,  0 } ,  RR ,  <  )  =  ( ( (
-u A  +  0 )  +  ( abs `  ( -u A  - 
0 ) ) )  /  2 ) )
1311, 1, 12sylancl 411 . . . . 5  |-  ( A  e.  RR  ->  sup ( { -u A , 
0 } ,  RR ,  <  )  =  ( ( ( -u A  +  0 )  +  ( abs `  ( -u A  -  0 ) ) )  /  2
) )
1411recnd 7948 . . . . . . . 8  |-  ( A  e.  RR  ->  -u A  e.  CC )
1514addid1d 8068 . . . . . . 7  |-  ( A  e.  RR  ->  ( -u A  +  0 )  =  -u A )
1614subid1d 8219 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( -u A  -  0 )  =  -u A )
1716fveq2d 5500 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  ( -u A  -  0 ) )  =  ( abs `  -u A
) )
184absnegd 11153 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  -u A )  =  ( abs `  A
) )
1917, 18eqtrd 2203 . . . . . . 7  |-  ( A  e.  RR  ->  ( abs `  ( -u A  -  0 ) )  =  ( abs `  A
) )
2015, 19oveq12d 5871 . . . . . 6  |-  ( A  e.  RR  ->  (
( -u A  +  0 )  +  ( abs `  ( -u A  - 
0 ) ) )  =  ( -u A  +  ( abs `  A
) ) )
2120oveq1d 5868 . . . . 5  |-  ( A  e.  RR  ->  (
( ( -u A  +  0 )  +  ( abs `  ( -u A  -  0 ) ) )  /  2
)  =  ( (
-u A  +  ( abs `  A ) )  /  2 ) )
2213, 21eqtrd 2203 . . . 4  |-  ( A  e.  RR  ->  sup ( { -u A , 
0 } ,  RR ,  <  )  =  ( ( -u A  +  ( abs `  A ) )  /  2 ) )
2310, 22oveq12d 5871 . . 3  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( ( ( A  +  ( abs `  A
) )  /  2
)  +  ( (
-u A  +  ( abs `  A ) )  /  2 ) ) )
244abscld 11145 . . . . . 6  |-  ( A  e.  RR  ->  ( abs `  A )  e.  RR )
2524recnd 7948 . . . . 5  |-  ( A  e.  RR  ->  ( abs `  A )  e.  CC )
264, 25addcld 7939 . . . 4  |-  ( A  e.  RR  ->  ( A  +  ( abs `  A ) )  e.  CC )
2714, 25addcld 7939 . . . 4  |-  ( A  e.  RR  ->  ( -u A  +  ( abs `  A ) )  e.  CC )
28 2cnd 8951 . . . 4  |-  ( A  e.  RR  ->  2  e.  CC )
29 2ap0 8971 . . . . 5  |-  2 #  0
3029a1i 9 . . . 4  |-  ( A  e.  RR  ->  2 #  0 )
3126, 27, 28, 30divdirapd 8746 . . 3  |-  ( A  e.  RR  ->  (
( ( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  /  2 )  =  ( ( ( A  +  ( abs `  A
) )  /  2
)  +  ( (
-u A  +  ( abs `  A ) )  /  2 ) ) )
324, 25, 14, 25add4d 8088 . . . . 5  |-  ( A  e.  RR  ->  (
( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  =  ( ( A  +  -u A )  +  ( ( abs `  A
)  +  ( abs `  A ) ) ) )
334negidd 8220 . . . . . 6  |-  ( A  e.  RR  ->  ( A  +  -u A )  =  0 )
3433oveq1d 5868 . . . . 5  |-  ( A  e.  RR  ->  (
( A  +  -u A )  +  ( ( abs `  A
)  +  ( abs `  A ) ) )  =  ( 0  +  ( ( abs `  A
)  +  ( abs `  A ) ) ) )
3525, 25addcld 7939 . . . . . 6  |-  ( A  e.  RR  ->  (
( abs `  A
)  +  ( abs `  A ) )  e.  CC )
3635addid2d 8069 . . . . 5  |-  ( A  e.  RR  ->  (
0  +  ( ( abs `  A )  +  ( abs `  A
) ) )  =  ( ( abs `  A
)  +  ( abs `  A ) ) )
3732, 34, 363eqtrd 2207 . . . 4  |-  ( A  e.  RR  ->  (
( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  =  ( ( abs `  A )  +  ( abs `  A ) ) )
3837oveq1d 5868 . . 3  |-  ( A  e.  RR  ->  (
( ( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  /  2 )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
3923, 31, 383eqtr2d 2209 . 2  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
40252timesd 9120 . . 3  |-  ( A  e.  RR  ->  (
2  x.  ( abs `  A ) )  =  ( ( abs `  A
)  +  ( abs `  A ) ) )
4140oveq1d 5868 . 2  |-  ( A  e.  RR  ->  (
( 2  x.  ( abs `  A ) )  /  2 )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
4225, 28, 30divcanap3d 8712 . 2  |-  ( A  e.  RR  ->  (
( 2  x.  ( abs `  A ) )  /  2 )  =  ( abs `  A
) )
4339, 41, 423eqtr2d 2209 1  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( abs `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   {cpr 3584   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   supcsup 6959   RRcr 7773   0cc0 7774    + caddc 7777    x. cmul 7779    < clt 7954    - cmin 8090   -ucneg 8091   # cap 8500    / cdiv 8589   2c2 8929   abscabs 10961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator