ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  max0addsup Unicode version

Theorem max0addsup 11725
Description: The sum of the positive and negative part functions is the absolute value function over the reals. (Contributed by Jim Kingdon, 30-Jan-2022.)
Assertion
Ref Expression
max0addsup  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( abs `  A
) )

Proof of Theorem max0addsup
StepHypRef Expression
1 0re 8142 . . . . . 6  |-  0  e.  RR
2 maxabs 11715 . . . . . 6  |-  ( ( A  e.  RR  /\  0  e.  RR )  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( ( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  /  2
) )
31, 2mpan2 425 . . . . 5  |-  ( A  e.  RR  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( ( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  / 
2 ) )
4 recn 8128 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
54addridd 8291 . . . . . . 7  |-  ( A  e.  RR  ->  ( A  +  0 )  =  A )
64subid1d 8442 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  -  0 )  =  A )
76fveq2d 5630 . . . . . . 7  |-  ( A  e.  RR  ->  ( abs `  ( A  - 
0 ) )  =  ( abs `  A
) )
85, 7oveq12d 6018 . . . . . 6  |-  ( A  e.  RR  ->  (
( A  +  0 )  +  ( abs `  ( A  -  0 ) ) )  =  ( A  +  ( abs `  A ) ) )
98oveq1d 6015 . . . . 5  |-  ( A  e.  RR  ->  (
( ( A  + 
0 )  +  ( abs `  ( A  -  0 ) ) )  /  2 )  =  ( ( A  +  ( abs `  A
) )  /  2
) )
103, 9eqtrd 2262 . . . 4  |-  ( A  e.  RR  ->  sup ( { A ,  0 } ,  RR ,  <  )  =  ( ( A  +  ( abs `  A ) )  / 
2 ) )
11 renegcl 8403 . . . . . 6  |-  ( A  e.  RR  ->  -u A  e.  RR )
12 maxabs 11715 . . . . . 6  |-  ( (
-u A  e.  RR  /\  0  e.  RR )  ->  sup ( { -u A ,  0 } ,  RR ,  <  )  =  ( ( (
-u A  +  0 )  +  ( abs `  ( -u A  - 
0 ) ) )  /  2 ) )
1311, 1, 12sylancl 413 . . . . 5  |-  ( A  e.  RR  ->  sup ( { -u A , 
0 } ,  RR ,  <  )  =  ( ( ( -u A  +  0 )  +  ( abs `  ( -u A  -  0 ) ) )  /  2
) )
1411recnd 8171 . . . . . . . 8  |-  ( A  e.  RR  ->  -u A  e.  CC )
1514addridd 8291 . . . . . . 7  |-  ( A  e.  RR  ->  ( -u A  +  0 )  =  -u A )
1614subid1d 8442 . . . . . . . . 9  |-  ( A  e.  RR  ->  ( -u A  -  0 )  =  -u A )
1716fveq2d 5630 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  ( -u A  -  0 ) )  =  ( abs `  -u A
) )
184absnegd 11695 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  -u A )  =  ( abs `  A
) )
1917, 18eqtrd 2262 . . . . . . 7  |-  ( A  e.  RR  ->  ( abs `  ( -u A  -  0 ) )  =  ( abs `  A
) )
2015, 19oveq12d 6018 . . . . . 6  |-  ( A  e.  RR  ->  (
( -u A  +  0 )  +  ( abs `  ( -u A  - 
0 ) ) )  =  ( -u A  +  ( abs `  A
) ) )
2120oveq1d 6015 . . . . 5  |-  ( A  e.  RR  ->  (
( ( -u A  +  0 )  +  ( abs `  ( -u A  -  0 ) ) )  /  2
)  =  ( (
-u A  +  ( abs `  A ) )  /  2 ) )
2213, 21eqtrd 2262 . . . 4  |-  ( A  e.  RR  ->  sup ( { -u A , 
0 } ,  RR ,  <  )  =  ( ( -u A  +  ( abs `  A ) )  /  2 ) )
2310, 22oveq12d 6018 . . 3  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( ( ( A  +  ( abs `  A
) )  /  2
)  +  ( (
-u A  +  ( abs `  A ) )  /  2 ) ) )
244abscld 11687 . . . . . 6  |-  ( A  e.  RR  ->  ( abs `  A )  e.  RR )
2524recnd 8171 . . . . 5  |-  ( A  e.  RR  ->  ( abs `  A )  e.  CC )
264, 25addcld 8162 . . . 4  |-  ( A  e.  RR  ->  ( A  +  ( abs `  A ) )  e.  CC )
2714, 25addcld 8162 . . . 4  |-  ( A  e.  RR  ->  ( -u A  +  ( abs `  A ) )  e.  CC )
28 2cnd 9179 . . . 4  |-  ( A  e.  RR  ->  2  e.  CC )
29 2ap0 9199 . . . . 5  |-  2 #  0
3029a1i 9 . . . 4  |-  ( A  e.  RR  ->  2 #  0 )
3126, 27, 28, 30divdirapd 8972 . . 3  |-  ( A  e.  RR  ->  (
( ( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  /  2 )  =  ( ( ( A  +  ( abs `  A
) )  /  2
)  +  ( (
-u A  +  ( abs `  A ) )  /  2 ) ) )
324, 25, 14, 25add4d 8311 . . . . 5  |-  ( A  e.  RR  ->  (
( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  =  ( ( A  +  -u A )  +  ( ( abs `  A
)  +  ( abs `  A ) ) ) )
334negidd 8443 . . . . . 6  |-  ( A  e.  RR  ->  ( A  +  -u A )  =  0 )
3433oveq1d 6015 . . . . 5  |-  ( A  e.  RR  ->  (
( A  +  -u A )  +  ( ( abs `  A
)  +  ( abs `  A ) ) )  =  ( 0  +  ( ( abs `  A
)  +  ( abs `  A ) ) ) )
3525, 25addcld 8162 . . . . . 6  |-  ( A  e.  RR  ->  (
( abs `  A
)  +  ( abs `  A ) )  e.  CC )
3635addlidd 8292 . . . . 5  |-  ( A  e.  RR  ->  (
0  +  ( ( abs `  A )  +  ( abs `  A
) ) )  =  ( ( abs `  A
)  +  ( abs `  A ) ) )
3732, 34, 363eqtrd 2266 . . . 4  |-  ( A  e.  RR  ->  (
( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  =  ( ( abs `  A )  +  ( abs `  A ) ) )
3837oveq1d 6015 . . 3  |-  ( A  e.  RR  ->  (
( ( A  +  ( abs `  A ) )  +  ( -u A  +  ( abs `  A ) ) )  /  2 )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
3923, 31, 383eqtr2d 2268 . 2  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
40252timesd 9350 . . 3  |-  ( A  e.  RR  ->  (
2  x.  ( abs `  A ) )  =  ( ( abs `  A
)  +  ( abs `  A ) ) )
4140oveq1d 6015 . 2  |-  ( A  e.  RR  ->  (
( 2  x.  ( abs `  A ) )  /  2 )  =  ( ( ( abs `  A )  +  ( abs `  A ) )  /  2 ) )
4225, 28, 30divcanap3d 8938 . 2  |-  ( A  e.  RR  ->  (
( 2  x.  ( abs `  A ) )  /  2 )  =  ( abs `  A
) )
4339, 41, 423eqtr2d 2268 1  |-  ( A  e.  RR  ->  ( sup ( { A , 
0 } ,  RR ,  <  )  +  sup ( { -u A , 
0 } ,  RR ,  <  ) )  =  ( abs `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {cpr 3667   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   supcsup 7145   RRcr 7994   0cc0 7995    + caddc 7998    x. cmul 8000    < clt 8177    - cmin 8313   -ucneg 8314   # cap 8724    / cdiv 8815   2c2 9157   abscabs 11503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator