ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  add4d GIF version

Theorem add4d 7572
Description: Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addd.1 (𝜑𝐴 ∈ ℂ)
addd.2 (𝜑𝐵 ∈ ℂ)
addd.3 (𝜑𝐶 ∈ ℂ)
add4d.4 (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
add4d (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))

Proof of Theorem add4d
StepHypRef Expression
1 addd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 addd.2 . 2 (𝜑𝐵 ∈ ℂ)
3 addd.3 . 2 (𝜑𝐶 ∈ ℂ)
4 add4d.4 . 2 (𝜑𝐷 ∈ ℂ)
5 add4 7564 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
61, 2, 3, 4, 5syl22anc 1173 1 (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1287  wcel 1436  (class class class)co 5594  cc 7269   + caddc 7274
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-addcl 7362  ax-addcom 7366  ax-addass 7368
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-rex 2361  df-v 2616  df-un 2990  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-br 3815  df-iota 4937  df-fv 4980  df-ov 5597
This theorem is referenced by:  apadd1  8003  binom3  9920  readd  10144  imadd  10152  max0addsup  10493
  Copyright terms: Public domain W3C validator