ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdtri Unicode version

Theorem bdtri 11181
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
bdtri  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )

Proof of Theorem bdtri
StepHypRef Expression
1 simp1l 1011 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  A  e.  RR )
2 simp2l 1013 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  B  e.  RR )
31, 2readdcld 7928 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  B
)  e.  RR )
4 simp3 989 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  C  e.  RR+ )
54rpred 9632 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  C  e.  RR )
63, 5readdcld 7928 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  +  C
)  e.  RR )
71recnd 7927 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  A  e.  CC )
82recnd 7927 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  B  e.  CC )
97, 8addcld 7918 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  B
)  e.  CC )
105recnd 7927 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  C  e.  CC )
119, 10subcld 8209 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  -  C
)  e.  CC )
1211abscld 11123 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  +  B
)  -  C ) )  e.  RR )
136, 12resubcld 8279 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  e.  RR )
141, 5readdcld 7928 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  C
)  e.  RR )
157, 10subcld 8209 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  -  C
)  e.  CC )
1615abscld 11123 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( A  -  C )
)  e.  RR )
1714, 16resubcld 8279 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  e.  RR )
182, 5readdcld 7928 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B  +  C
)  e.  RR )
198, 10subcld 8209 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B  -  C
)  e.  CC )
2019abscld 11123 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( B  -  C )
)  e.  RR )
2118, 20resubcld 8279 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) )  e.  RR )
2217, 21readdcld 7928 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  +  ( ( B  +  C )  -  ( abs `  ( B  -  C )
) ) )  e.  RR )
23 2rp 9594 . . . 4  |-  2  e.  RR+
2423a1i 9 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  2  e.  RR+ )
2512renegcld 8278 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> 
-u ( abs `  (
( A  +  B
)  -  C ) )  e.  RR )
2616, 20readdcld 7928 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) )  e.  RR )
275, 26resubcld 8279 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( C  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  e.  RR )
2816recnd 7927 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( A  -  C )
)  e.  CC )
2920recnd 7927 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( B  -  C )
)  e.  CC )
3028, 29addcld 7918 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) )  e.  CC )
3112recnd 7927 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  +  B
)  -  C ) )  e.  CC )
3230, 31, 30sub32d 8241 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) )  =  ( ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) )  -  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) ) )  -  ( abs `  ( ( A  +  B )  -  C ) ) ) )
3330subidd 8197 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) )  -  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) ) )  =  0 )
3433oveq1d 5857 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  -  ( abs `  (
( A  +  B
)  -  C ) ) )  =  ( 0  -  ( abs `  ( ( A  +  B )  -  C
) ) ) )
3532, 34eqtrd 2198 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) )  =  ( 0  -  ( abs `  ( ( A  +  B )  -  C
) ) ) )
36 df-neg 8072 . . . . . . 7  |-  -u ( abs `  ( ( A  +  B )  -  C ) )  =  ( 0  -  ( abs `  ( ( A  +  B )  -  C ) ) )
3735, 36eqtr4di 2217 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) )  =  -u ( abs `  ( ( A  +  B )  -  C ) ) )
3826, 12resubcld 8279 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) )  -  ( abs `  ( ( A  +  B )  -  C
) ) )  e.  RR )
39 bdtrilem 11180 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) )  <_ 
( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) )
4026, 12, 5lesubaddd 8440 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  <_  C  <->  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  <_  ( C  +  ( abs `  ( ( A  +  B )  -  C
) ) ) ) )
4139, 40mpbird 166 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) )  -  ( abs `  ( ( A  +  B )  -  C
) ) )  <_  C )
4238, 5, 26, 41lesub1dd 8459 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) )  <_  ( C  -  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) ) ) )
4337, 42eqbrtrrd 4006 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> 
-u ( abs `  (
( A  +  B
)  -  C ) )  <_  ( C  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) ) )
4425, 27, 6, 43leadd2dd 8458 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  -u ( abs `  ( ( A  +  B )  -  C ) ) )  <_  ( (
( A  +  B
)  +  C )  +  ( C  -  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) ) ) )
459, 10addcld 7918 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  +  C
)  e.  CC )
4645, 31negsubd 8215 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  -u ( abs `  ( ( A  +  B )  -  C ) ) )  =  ( ( ( A  +  B
)  +  C )  -  ( abs `  (
( A  +  B
)  -  C ) ) ) )
479, 10, 10addassd 7921 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  C
)  =  ( ( A  +  B )  +  ( C  +  C ) ) )
487, 8, 10, 10add4d 8067 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  +  ( C  +  C ) )  =  ( ( A  +  C )  +  ( B  +  C ) ) )
4947, 48eqtrd 2198 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  C
)  =  ( ( A  +  C )  +  ( B  +  C ) ) )
5049oveq1d 5857 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  +  B )  +  C )  +  C )  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  =  ( ( ( A  +  C )  +  ( B  +  C ) )  -  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) ) )
5145, 10, 30addsubassd 8229 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  +  B )  +  C )  +  C )  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  =  ( ( ( A  +  B )  +  C )  +  ( C  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) ) ) )
527, 10addcld 7918 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  C
)  e.  CC )
538, 10addcld 7918 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B  +  C
)  e.  CC )
5452, 53, 28, 29addsub4d 8256 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  C )  +  ( B  +  C
) )  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  =  ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  +  ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) ) ) )
5550, 51, 543eqtr3d 2206 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  ( C  -  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) ) ) )  =  ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  +  ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) ) ) )
5644, 46, 553brtr3d 4013 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  <_  ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  +  ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) ) ) )
5713, 22, 24, 56lediv1dd 9691 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  /  2 )  <_  ( ( ( ( A  +  C
)  -  ( abs `  ( A  -  C
) ) )  +  ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) ) )  /  2 ) )
58 minabs 11177 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  C  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  =  ( ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  /  2 ) )
593, 5, 58syl2anc 409 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  =  ( ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  /  2 ) )
60 minabs 11177 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  =  ( ( ( A  +  C
)  -  ( abs `  ( A  -  C
) ) )  / 
2 ) )
611, 5, 60syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { A ,  C } ,  RR ,  <  )  =  ( ( ( A  +  C
)  -  ( abs `  ( A  -  C
) ) )  / 
2 ) )
62 minabs 11177 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  =  ( ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) )  / 
2 ) )
632, 5, 62syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { B ,  C } ,  RR ,  <  )  =  ( ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) )  / 
2 ) )
6461, 63oveq12d 5860 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
)  =  ( ( ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  /  2 )  +  ( ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) )  /  2 ) ) )
6552, 28subcld 8209 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  e.  CC )
6653, 29subcld 8209 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) )  e.  CC )
67 2cnd 8930 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  2  e.  CC )
68 2ap0 8950 . . . . 5  |-  2 #  0
6968a1i 9 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  2 #  0 )
7065, 66, 67, 69divdirapd 8725 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  +  ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) ) )  /  2 )  =  ( ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  /  2
)  +  ( ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) )  / 
2 ) ) )
7164, 70eqtr4d 2201 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
)  =  ( ( ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  +  ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) ) )  /  2
) )
7257, 59, 713brtr4d 4014 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   {cpr 3577   class class class wbr 3982   ` cfv 5188  (class class class)co 5842  infcinf 6948   RRcr 7752   0cc0 7753    + caddc 7756    < clt 7933    <_ cle 7934    - cmin 8069   -ucneg 8070   # cap 8479    / cdiv 8568   2c2 8908   RR+crp 9589   abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  xrbdtri  11217
  Copyright terms: Public domain W3C validator