ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bdtri Unicode version

Theorem bdtri 11167
Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.)
Assertion
Ref Expression
bdtri  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )

Proof of Theorem bdtri
StepHypRef Expression
1 simp1l 1010 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  A  e.  RR )
2 simp2l 1012 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  B  e.  RR )
31, 2readdcld 7919 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  B
)  e.  RR )
4 simp3 988 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  C  e.  RR+ )
54rpred 9623 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  C  e.  RR )
63, 5readdcld 7919 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  +  C
)  e.  RR )
71recnd 7918 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  A  e.  CC )
82recnd 7918 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  B  e.  CC )
97, 8addcld 7909 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  B
)  e.  CC )
105recnd 7918 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  C  e.  CC )
119, 10subcld 8200 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  -  C
)  e.  CC )
1211abscld 11109 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  +  B
)  -  C ) )  e.  RR )
136, 12resubcld 8270 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  e.  RR )
141, 5readdcld 7919 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  C
)  e.  RR )
157, 10subcld 8200 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  -  C
)  e.  CC )
1615abscld 11109 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( A  -  C )
)  e.  RR )
1714, 16resubcld 8270 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  e.  RR )
182, 5readdcld 7919 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B  +  C
)  e.  RR )
198, 10subcld 8200 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B  -  C
)  e.  CC )
2019abscld 11109 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( B  -  C )
)  e.  RR )
2118, 20resubcld 8270 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) )  e.  RR )
2217, 21readdcld 7919 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  +  ( ( B  +  C )  -  ( abs `  ( B  -  C )
) ) )  e.  RR )
23 2rp 9585 . . . 4  |-  2  e.  RR+
2423a1i 9 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  2  e.  RR+ )
2512renegcld 8269 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> 
-u ( abs `  (
( A  +  B
)  -  C ) )  e.  RR )
2616, 20readdcld 7919 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) )  e.  RR )
275, 26resubcld 8270 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( C  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  e.  RR )
2816recnd 7918 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( A  -  C )
)  e.  CC )
2920recnd 7918 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  ( B  -  C )
)  e.  CC )
3028, 29addcld 7909 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) )  e.  CC )
3112recnd 7918 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( abs `  (
( A  +  B
)  -  C ) )  e.  CC )
3230, 31, 30sub32d 8232 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) )  =  ( ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) )  -  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) ) )  -  ( abs `  ( ( A  +  B )  -  C ) ) ) )
3330subidd 8188 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) )  -  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) ) )  =  0 )
3433oveq1d 5851 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  -  ( abs `  (
( A  +  B
)  -  C ) ) )  =  ( 0  -  ( abs `  ( ( A  +  B )  -  C
) ) ) )
3532, 34eqtrd 2197 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) )  =  ( 0  -  ( abs `  ( ( A  +  B )  -  C
) ) ) )
36 df-neg 8063 . . . . . . 7  |-  -u ( abs `  ( ( A  +  B )  -  C ) )  =  ( 0  -  ( abs `  ( ( A  +  B )  -  C ) ) )
3735, 36eqtr4di 2215 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) )  =  -u ( abs `  ( ( A  +  B )  -  C ) ) )
3826, 12resubcld 8270 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) )  -  ( abs `  ( ( A  +  B )  -  C
) ) )  e.  RR )
39 bdtrilem 11166 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) )  <_ 
( C  +  ( abs `  ( ( A  +  B )  -  C ) ) ) )
4026, 12, 5lesubaddd 8431 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  <_  C  <->  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  <_  ( C  +  ( abs `  ( ( A  +  B )  -  C
) ) ) ) )
4139, 40mpbird 166 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) )  -  ( abs `  ( ( A  +  B )  -  C
) ) )  <_  C )
4238, 5, 26, 41lesub1dd 8450 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) )  <_  ( C  -  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) ) ) )
4337, 42eqbrtrrd 4000 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> 
-u ( abs `  (
( A  +  B
)  -  C ) )  <_  ( C  -  ( ( abs `  ( A  -  C
) )  +  ( abs `  ( B  -  C ) ) ) ) )
4425, 27, 6, 43leadd2dd 8449 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  -u ( abs `  ( ( A  +  B )  -  C ) ) )  <_  ( (
( A  +  B
)  +  C )  +  ( C  -  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) ) ) )
459, 10addcld 7909 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  +  C
)  e.  CC )
4645, 31negsubd 8206 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  -u ( abs `  ( ( A  +  B )  -  C ) ) )  =  ( ( ( A  +  B
)  +  C )  -  ( abs `  (
( A  +  B
)  -  C ) ) ) )
479, 10, 10addassd 7912 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  C
)  =  ( ( A  +  B )  +  ( C  +  C ) ) )
487, 8, 10, 10add4d 8058 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  B )  +  ( C  +  C ) )  =  ( ( A  +  C )  +  ( B  +  C ) ) )
4947, 48eqtrd 2197 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  C
)  =  ( ( A  +  C )  +  ( B  +  C ) ) )
5049oveq1d 5851 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  +  B )  +  C )  +  C )  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  =  ( ( ( A  +  C )  +  ( B  +  C ) )  -  ( ( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) ) )
5145, 10, 30addsubassd 8220 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  +  B )  +  C )  +  C )  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  =  ( ( ( A  +  B )  +  C )  +  ( C  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) ) ) )
527, 10addcld 7909 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( A  +  C
)  e.  CC )
538, 10addcld 7909 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( B  +  C
)  e.  CC )
5452, 53, 28, 29addsub4d 8247 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  C )  +  ( B  +  C
) )  -  (
( abs `  ( A  -  C )
)  +  ( abs `  ( B  -  C
) ) ) )  =  ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  +  ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) ) ) )
5550, 51, 543eqtr3d 2205 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  +  ( C  -  ( ( abs `  ( A  -  C ) )  +  ( abs `  ( B  -  C )
) ) ) )  =  ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  +  ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) ) ) )
5644, 46, 553brtr3d 4007 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  <_  ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  +  ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) ) ) )
5713, 22, 24, 56lediv1dd 9682 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  /  2 )  <_  ( ( ( ( A  +  C
)  -  ( abs `  ( A  -  C
) ) )  +  ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) ) )  /  2 ) )
58 minabs 11163 . . 3  |-  ( ( ( A  +  B
)  e.  RR  /\  C  e.  RR )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  =  ( ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  /  2 ) )
593, 5, 58syl2anc 409 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  =  ( ( ( ( A  +  B )  +  C )  -  ( abs `  ( ( A  +  B )  -  C ) ) )  /  2 ) )
60 minabs 11163 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  -> inf ( { A ,  C } ,  RR ,  <  )  =  ( ( ( A  +  C
)  -  ( abs `  ( A  -  C
) ) )  / 
2 ) )
611, 5, 60syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { A ,  C } ,  RR ,  <  )  =  ( ( ( A  +  C
)  -  ( abs `  ( A  -  C
) ) )  / 
2 ) )
62 minabs 11163 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  -> inf ( { B ,  C } ,  RR ,  <  )  =  ( ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) )  / 
2 ) )
632, 5, 62syl2anc 409 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { B ,  C } ,  RR ,  <  )  =  ( ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) )  / 
2 ) )
6461, 63oveq12d 5854 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
)  =  ( ( ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  /  2 )  +  ( ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) )  /  2 ) ) )
6552, 28subcld 8200 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  e.  CC )
6653, 29subcld 8200 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) )  e.  CC )
67 2cnd 8921 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  2  e.  CC )
68 2ap0 8941 . . . . 5  |-  2 #  0
6968a1i 9 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  2 #  0 )
7065, 66, 67, 69divdirapd 8716 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  ( ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  +  ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) ) )  /  2 )  =  ( ( ( ( A  +  C )  -  ( abs `  ( A  -  C )
) )  /  2
)  +  ( ( ( B  +  C
)  -  ( abs `  ( B  -  C
) ) )  / 
2 ) ) )
7164, 70eqtr4d 2200 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  ->  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
)  =  ( ( ( ( A  +  C )  -  ( abs `  ( A  -  C ) ) )  +  ( ( B  +  C )  -  ( abs `  ( B  -  C ) ) ) )  /  2
) )
7257, 59, 713brtr4d 4008 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )  /\  C  e.  RR+ )  -> inf ( { ( A  +  B ) ,  C } ,  RR ,  <  )  <_  (inf ( { A ,  C } ,  RR ,  <  )  + inf ( { B ,  C } ,  RR ,  <  )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135   {cpr 3571   class class class wbr 3976   ` cfv 5182  (class class class)co 5836  infcinf 6939   RRcr 7743   0cc0 7744    + caddc 7747    < clt 7924    <_ cle 7925    - cmin 8060   -ucneg 8061   # cap 8470    / cdiv 8559   2c2 8899   RR+crp 9580   abscabs 10925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-isom 5191  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-sup 6940  df-inf 6941  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927
This theorem is referenced by:  xrbdtri  11203
  Copyright terms: Public domain W3C validator