| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bdtri | Unicode version | ||
| Description: Triangle inequality for bounded values. (Contributed by Jim Kingdon, 15-May-2023.) |
| Ref | Expression |
|---|---|
| bdtri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1l 1023 |
. . . . . 6
| |
| 2 | simp2l 1025 |
. . . . . 6
| |
| 3 | 1, 2 | readdcld 8056 |
. . . . 5
|
| 4 | simp3 1001 |
. . . . . 6
| |
| 5 | 4 | rpred 9771 |
. . . . 5
|
| 6 | 3, 5 | readdcld 8056 |
. . . 4
|
| 7 | 1 | recnd 8055 |
. . . . . . 7
|
| 8 | 2 | recnd 8055 |
. . . . . . 7
|
| 9 | 7, 8 | addcld 8046 |
. . . . . 6
|
| 10 | 5 | recnd 8055 |
. . . . . 6
|
| 11 | 9, 10 | subcld 8337 |
. . . . 5
|
| 12 | 11 | abscld 11346 |
. . . 4
|
| 13 | 6, 12 | resubcld 8407 |
. . 3
|
| 14 | 1, 5 | readdcld 8056 |
. . . . 5
|
| 15 | 7, 10 | subcld 8337 |
. . . . . 6
|
| 16 | 15 | abscld 11346 |
. . . . 5
|
| 17 | 14, 16 | resubcld 8407 |
. . . 4
|
| 18 | 2, 5 | readdcld 8056 |
. . . . 5
|
| 19 | 8, 10 | subcld 8337 |
. . . . . 6
|
| 20 | 19 | abscld 11346 |
. . . . 5
|
| 21 | 18, 20 | resubcld 8407 |
. . . 4
|
| 22 | 17, 21 | readdcld 8056 |
. . 3
|
| 23 | 2rp 9733 |
. . . 4
| |
| 24 | 23 | a1i 9 |
. . 3
|
| 25 | 12 | renegcld 8406 |
. . . . 5
|
| 26 | 16, 20 | readdcld 8056 |
. . . . . 6
|
| 27 | 5, 26 | resubcld 8407 |
. . . . 5
|
| 28 | 16 | recnd 8055 |
. . . . . . . . . 10
|
| 29 | 20 | recnd 8055 |
. . . . . . . . . 10
|
| 30 | 28, 29 | addcld 8046 |
. . . . . . . . 9
|
| 31 | 12 | recnd 8055 |
. . . . . . . . 9
|
| 32 | 30, 31, 30 | sub32d 8369 |
. . . . . . . 8
|
| 33 | 30 | subidd 8325 |
. . . . . . . . 9
|
| 34 | 33 | oveq1d 5937 |
. . . . . . . 8
|
| 35 | 32, 34 | eqtrd 2229 |
. . . . . . 7
|
| 36 | df-neg 8200 |
. . . . . . 7
| |
| 37 | 35, 36 | eqtr4di 2247 |
. . . . . 6
|
| 38 | 26, 12 | resubcld 8407 |
. . . . . . 7
|
| 39 | bdtrilem 11404 |
. . . . . . . 8
| |
| 40 | 26, 12, 5 | lesubaddd 8569 |
. . . . . . . 8
|
| 41 | 39, 40 | mpbird 167 |
. . . . . . 7
|
| 42 | 38, 5, 26, 41 | lesub1dd 8588 |
. . . . . 6
|
| 43 | 37, 42 | eqbrtrrd 4057 |
. . . . 5
|
| 44 | 25, 27, 6, 43 | leadd2dd 8587 |
. . . 4
|
| 45 | 9, 10 | addcld 8046 |
. . . . 5
|
| 46 | 45, 31 | negsubd 8343 |
. . . 4
|
| 47 | 9, 10, 10 | addassd 8049 |
. . . . . . 7
|
| 48 | 7, 8, 10, 10 | add4d 8195 |
. . . . . . 7
|
| 49 | 47, 48 | eqtrd 2229 |
. . . . . 6
|
| 50 | 49 | oveq1d 5937 |
. . . . 5
|
| 51 | 45, 10, 30 | addsubassd 8357 |
. . . . 5
|
| 52 | 7, 10 | addcld 8046 |
. . . . . 6
|
| 53 | 8, 10 | addcld 8046 |
. . . . . 6
|
| 54 | 52, 53, 28, 29 | addsub4d 8384 |
. . . . 5
|
| 55 | 50, 51, 54 | 3eqtr3d 2237 |
. . . 4
|
| 56 | 44, 46, 55 | 3brtr3d 4064 |
. . 3
|
| 57 | 13, 22, 24, 56 | lediv1dd 9830 |
. 2
|
| 58 | minabs 11401 |
. . 3
| |
| 59 | 3, 5, 58 | syl2anc 411 |
. 2
|
| 60 | minabs 11401 |
. . . . 5
| |
| 61 | 1, 5, 60 | syl2anc 411 |
. . . 4
|
| 62 | minabs 11401 |
. . . . 5
| |
| 63 | 2, 5, 62 | syl2anc 411 |
. . . 4
|
| 64 | 61, 63 | oveq12d 5940 |
. . 3
|
| 65 | 52, 28 | subcld 8337 |
. . . 4
|
| 66 | 53, 29 | subcld 8337 |
. . . 4
|
| 67 | 2cnd 9063 |
. . . 4
| |
| 68 | 2ap0 9083 |
. . . . 5
| |
| 69 | 68 | a1i 9 |
. . . 4
|
| 70 | 65, 66, 67, 69 | divdirapd 8856 |
. . 3
|
| 71 | 64, 70 | eqtr4d 2232 |
. 2
|
| 72 | 57, 59, 71 | 3brtr4d 4065 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 |
| This theorem is referenced by: xrbdtri 11441 |
| Copyright terms: Public domain | W3C validator |