| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efi4p | Unicode version | ||
| Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| efi4p.1 |
|
| Ref | Expression |
|---|---|
| efi4p |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 8050 |
. . . 4
| |
| 2 | mulcl 8082 |
. . . 4
| |
| 3 | 1, 2 | mpan 424 |
. . 3
|
| 4 | efi4p.1 |
. . . 4
| |
| 5 | 4 | ef4p 12090 |
. . 3
|
| 6 | 3, 5 | syl 14 |
. 2
|
| 7 | ax-1cn 8048 |
. . . . . 6
| |
| 8 | addcl 8080 |
. . . . . 6
| |
| 9 | 7, 3, 8 | sylancr 414 |
. . . . 5
|
| 10 | 3 | sqcld 10848 |
. . . . . 6
|
| 11 | 10 | halfcld 9312 |
. . . . 5
|
| 12 | 3nn0 9343 |
. . . . . . 7
| |
| 13 | expcl 10734 |
. . . . . . 7
| |
| 14 | 3, 12, 13 | sylancl 413 |
. . . . . 6
|
| 15 | 6cn 9148 |
. . . . . . 7
| |
| 16 | 6re 9147 |
. . . . . . . 8
| |
| 17 | 6pos 9167 |
. . . . . . . 8
| |
| 18 | 16, 17 | gt0ap0ii 8731 |
. . . . . . 7
|
| 19 | divclap 8781 |
. . . . . . 7
| |
| 20 | 15, 18, 19 | mp3an23 1342 |
. . . . . 6
|
| 21 | 14, 20 | syl 14 |
. . . . 5
|
| 22 | 9, 11, 21 | addassd 8125 |
. . . 4
|
| 23 | 7 | a1i 9 |
. . . . 5
|
| 24 | 23, 3, 11, 21 | add4d 8271 |
. . . 4
|
| 25 | 2nn0 9342 |
. . . . . . . . . . 11
| |
| 26 | mulexp 10755 |
. . . . . . . . . . 11
| |
| 27 | 1, 25, 26 | mp3an13 1341 |
. . . . . . . . . 10
|
| 28 | i2 10817 |
. . . . . . . . . . . 12
| |
| 29 | 28 | oveq1i 5972 |
. . . . . . . . . . 11
|
| 30 | 29 | a1i 9 |
. . . . . . . . . 10
|
| 31 | sqcl 10777 |
. . . . . . . . . . 11
| |
| 32 | 31 | mulm1d 8512 |
. . . . . . . . . 10
|
| 33 | 27, 30, 32 | 3eqtrd 2243 |
. . . . . . . . 9
|
| 34 | 33 | oveq1d 5977 |
. . . . . . . 8
|
| 35 | 2cn 9137 |
. . . . . . . . . 10
| |
| 36 | 2ap0 9159 |
. . . . . . . . . 10
| |
| 37 | divnegap 8809 |
. . . . . . . . . 10
| |
| 38 | 35, 36, 37 | mp3an23 1342 |
. . . . . . . . 9
|
| 39 | 31, 38 | syl 14 |
. . . . . . . 8
|
| 40 | 34, 39 | eqtr4d 2242 |
. . . . . . 7
|
| 41 | 40 | oveq2d 5978 |
. . . . . 6
|
| 42 | 31 | halfcld 9312 |
. . . . . . 7
|
| 43 | negsub 8350 |
. . . . . . 7
| |
| 44 | 7, 42, 43 | sylancr 414 |
. . . . . 6
|
| 45 | 41, 44 | eqtrd 2239 |
. . . . 5
|
| 46 | mulexp 10755 |
. . . . . . . . . . 11
| |
| 47 | 1, 12, 46 | mp3an13 1341 |
. . . . . . . . . 10
|
| 48 | i3 10818 |
. . . . . . . . . . 11
| |
| 49 | 48 | oveq1i 5972 |
. . . . . . . . . 10
|
| 50 | 47, 49 | eqtrdi 2255 |
. . . . . . . . 9
|
| 51 | 50 | oveq1d 5977 |
. . . . . . . 8
|
| 52 | expcl 10734 |
. . . . . . . . . 10
| |
| 53 | 12, 52 | mpan2 425 |
. . . . . . . . 9
|
| 54 | negicn 8303 |
. . . . . . . . . 10
| |
| 55 | 15, 18 | pm3.2i 272 |
. . . . . . . . . 10
|
| 56 | divassap 8793 |
. . . . . . . . . 10
| |
| 57 | 54, 55, 56 | mp3an13 1341 |
. . . . . . . . 9
|
| 58 | 53, 57 | syl 14 |
. . . . . . . 8
|
| 59 | divclap 8781 |
. . . . . . . . . . 11
| |
| 60 | 15, 18, 59 | mp3an23 1342 |
. . . . . . . . . 10
|
| 61 | 53, 60 | syl 14 |
. . . . . . . . 9
|
| 62 | mulneg12 8499 |
. . . . . . . . 9
| |
| 63 | 1, 61, 62 | sylancr 414 |
. . . . . . . 8
|
| 64 | 51, 58, 63 | 3eqtrd 2243 |
. . . . . . 7
|
| 65 | 64 | oveq2d 5978 |
. . . . . 6
|
| 66 | 61 | negcld 8400 |
. . . . . . 7
|
| 67 | adddi 8087 |
. . . . . . . 8
| |
| 68 | 1, 67 | mp3an1 1337 |
. . . . . . 7
|
| 69 | 66, 68 | mpdan 421 |
. . . . . 6
|
| 70 | negsub 8350 |
. . . . . . . 8
| |
| 71 | 61, 70 | mpdan 421 |
. . . . . . 7
|
| 72 | 71 | oveq2d 5978 |
. . . . . 6
|
| 73 | 65, 69, 72 | 3eqtr2d 2245 |
. . . . 5
|
| 74 | 45, 73 | oveq12d 5980 |
. . . 4
|
| 75 | 22, 24, 74 | 3eqtrd 2243 |
. . 3
|
| 76 | 75 | oveq1d 5977 |
. 2
|
| 77 | 6, 76 | eqtrd 2239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 ax-arch 8074 ax-caucvg 8075 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-isom 5294 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-irdg 6474 df-frec 6495 df-1o 6520 df-oadd 6524 df-er 6638 df-en 6846 df-dom 6847 df-fin 6848 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-n0 9326 df-z 9403 df-uz 9679 df-q 9771 df-rp 9806 df-ico 10046 df-fz 10161 df-fzo 10295 df-seqfrec 10625 df-exp 10716 df-fac 10903 df-ihash 10953 df-cj 11238 df-re 11239 df-im 11240 df-rsqrt 11394 df-abs 11395 df-clim 11675 df-sumdc 11750 df-ef 12044 |
| This theorem is referenced by: resin4p 12114 recos4p 12115 |
| Copyright terms: Public domain | W3C validator |