| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > efi4p | Unicode version | ||
| Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) | 
| Ref | Expression | 
|---|---|
| efi4p.1 | 
 | 
| Ref | Expression | 
|---|---|
| efi4p | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-icn 7974 | 
. . . 4
 | |
| 2 | mulcl 8006 | 
. . . 4
 | |
| 3 | 1, 2 | mpan 424 | 
. . 3
 | 
| 4 | efi4p.1 | 
. . . 4
 | |
| 5 | 4 | ef4p 11859 | 
. . 3
 | 
| 6 | 3, 5 | syl 14 | 
. 2
 | 
| 7 | ax-1cn 7972 | 
. . . . . 6
 | |
| 8 | addcl 8004 | 
. . . . . 6
 | |
| 9 | 7, 3, 8 | sylancr 414 | 
. . . . 5
 | 
| 10 | 3 | sqcld 10763 | 
. . . . . 6
 | 
| 11 | 10 | halfcld 9236 | 
. . . . 5
 | 
| 12 | 3nn0 9267 | 
. . . . . . 7
 | |
| 13 | expcl 10649 | 
. . . . . . 7
 | |
| 14 | 3, 12, 13 | sylancl 413 | 
. . . . . 6
 | 
| 15 | 6cn 9072 | 
. . . . . . 7
 | |
| 16 | 6re 9071 | 
. . . . . . . 8
 | |
| 17 | 6pos 9091 | 
. . . . . . . 8
 | |
| 18 | 16, 17 | gt0ap0ii 8655 | 
. . . . . . 7
 | 
| 19 | divclap 8705 | 
. . . . . . 7
 | |
| 20 | 15, 18, 19 | mp3an23 1340 | 
. . . . . 6
 | 
| 21 | 14, 20 | syl 14 | 
. . . . 5
 | 
| 22 | 9, 11, 21 | addassd 8049 | 
. . . 4
 | 
| 23 | 7 | a1i 9 | 
. . . . 5
 | 
| 24 | 23, 3, 11, 21 | add4d 8195 | 
. . . 4
 | 
| 25 | 2nn0 9266 | 
. . . . . . . . . . 11
 | |
| 26 | mulexp 10670 | 
. . . . . . . . . . 11
 | |
| 27 | 1, 25, 26 | mp3an13 1339 | 
. . . . . . . . . 10
 | 
| 28 | i2 10732 | 
. . . . . . . . . . . 12
 | |
| 29 | 28 | oveq1i 5932 | 
. . . . . . . . . . 11
 | 
| 30 | 29 | a1i 9 | 
. . . . . . . . . 10
 | 
| 31 | sqcl 10692 | 
. . . . . . . . . . 11
 | |
| 32 | 31 | mulm1d 8436 | 
. . . . . . . . . 10
 | 
| 33 | 27, 30, 32 | 3eqtrd 2233 | 
. . . . . . . . 9
 | 
| 34 | 33 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 35 | 2cn 9061 | 
. . . . . . . . . 10
 | |
| 36 | 2ap0 9083 | 
. . . . . . . . . 10
 | |
| 37 | divnegap 8733 | 
. . . . . . . . . 10
 | |
| 38 | 35, 36, 37 | mp3an23 1340 | 
. . . . . . . . 9
 | 
| 39 | 31, 38 | syl 14 | 
. . . . . . . 8
 | 
| 40 | 34, 39 | eqtr4d 2232 | 
. . . . . . 7
 | 
| 41 | 40 | oveq2d 5938 | 
. . . . . 6
 | 
| 42 | 31 | halfcld 9236 | 
. . . . . . 7
 | 
| 43 | negsub 8274 | 
. . . . . . 7
 | |
| 44 | 7, 42, 43 | sylancr 414 | 
. . . . . 6
 | 
| 45 | 41, 44 | eqtrd 2229 | 
. . . . 5
 | 
| 46 | mulexp 10670 | 
. . . . . . . . . . 11
 | |
| 47 | 1, 12, 46 | mp3an13 1339 | 
. . . . . . . . . 10
 | 
| 48 | i3 10733 | 
. . . . . . . . . . 11
 | |
| 49 | 48 | oveq1i 5932 | 
. . . . . . . . . 10
 | 
| 50 | 47, 49 | eqtrdi 2245 | 
. . . . . . . . 9
 | 
| 51 | 50 | oveq1d 5937 | 
. . . . . . . 8
 | 
| 52 | expcl 10649 | 
. . . . . . . . . 10
 | |
| 53 | 12, 52 | mpan2 425 | 
. . . . . . . . 9
 | 
| 54 | negicn 8227 | 
. . . . . . . . . 10
 | |
| 55 | 15, 18 | pm3.2i 272 | 
. . . . . . . . . 10
 | 
| 56 | divassap 8717 | 
. . . . . . . . . 10
 | |
| 57 | 54, 55, 56 | mp3an13 1339 | 
. . . . . . . . 9
 | 
| 58 | 53, 57 | syl 14 | 
. . . . . . . 8
 | 
| 59 | divclap 8705 | 
. . . . . . . . . . 11
 | |
| 60 | 15, 18, 59 | mp3an23 1340 | 
. . . . . . . . . 10
 | 
| 61 | 53, 60 | syl 14 | 
. . . . . . . . 9
 | 
| 62 | mulneg12 8423 | 
. . . . . . . . 9
 | |
| 63 | 1, 61, 62 | sylancr 414 | 
. . . . . . . 8
 | 
| 64 | 51, 58, 63 | 3eqtrd 2233 | 
. . . . . . 7
 | 
| 65 | 64 | oveq2d 5938 | 
. . . . . 6
 | 
| 66 | 61 | negcld 8324 | 
. . . . . . 7
 | 
| 67 | adddi 8011 | 
. . . . . . . 8
 | |
| 68 | 1, 67 | mp3an1 1335 | 
. . . . . . 7
 | 
| 69 | 66, 68 | mpdan 421 | 
. . . . . 6
 | 
| 70 | negsub 8274 | 
. . . . . . . 8
 | |
| 71 | 61, 70 | mpdan 421 | 
. . . . . . 7
 | 
| 72 | 71 | oveq2d 5938 | 
. . . . . 6
 | 
| 73 | 65, 69, 72 | 3eqtr2d 2235 | 
. . . . 5
 | 
| 74 | 45, 73 | oveq12d 5940 | 
. . . 4
 | 
| 75 | 22, 24, 74 | 3eqtrd 2233 | 
. . 3
 | 
| 76 | 75 | oveq1d 5937 | 
. 2
 | 
| 77 | 6, 76 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-fac 10818 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 df-ef 11813 | 
| This theorem is referenced by: resin4p 11883 recos4p 11884 | 
| Copyright terms: Public domain | W3C validator |