| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efi4p | Unicode version | ||
| Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
| Ref | Expression |
|---|---|
| efi4p.1 |
|
| Ref | Expression |
|---|---|
| efi4p |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 8020 |
. . . 4
| |
| 2 | mulcl 8052 |
. . . 4
| |
| 3 | 1, 2 | mpan 424 |
. . 3
|
| 4 | efi4p.1 |
. . . 4
| |
| 5 | 4 | ef4p 12005 |
. . 3
|
| 6 | 3, 5 | syl 14 |
. 2
|
| 7 | ax-1cn 8018 |
. . . . . 6
| |
| 8 | addcl 8050 |
. . . . . 6
| |
| 9 | 7, 3, 8 | sylancr 414 |
. . . . 5
|
| 10 | 3 | sqcld 10816 |
. . . . . 6
|
| 11 | 10 | halfcld 9282 |
. . . . 5
|
| 12 | 3nn0 9313 |
. . . . . . 7
| |
| 13 | expcl 10702 |
. . . . . . 7
| |
| 14 | 3, 12, 13 | sylancl 413 |
. . . . . 6
|
| 15 | 6cn 9118 |
. . . . . . 7
| |
| 16 | 6re 9117 |
. . . . . . . 8
| |
| 17 | 6pos 9137 |
. . . . . . . 8
| |
| 18 | 16, 17 | gt0ap0ii 8701 |
. . . . . . 7
|
| 19 | divclap 8751 |
. . . . . . 7
| |
| 20 | 15, 18, 19 | mp3an23 1342 |
. . . . . 6
|
| 21 | 14, 20 | syl 14 |
. . . . 5
|
| 22 | 9, 11, 21 | addassd 8095 |
. . . 4
|
| 23 | 7 | a1i 9 |
. . . . 5
|
| 24 | 23, 3, 11, 21 | add4d 8241 |
. . . 4
|
| 25 | 2nn0 9312 |
. . . . . . . . . . 11
| |
| 26 | mulexp 10723 |
. . . . . . . . . . 11
| |
| 27 | 1, 25, 26 | mp3an13 1341 |
. . . . . . . . . 10
|
| 28 | i2 10785 |
. . . . . . . . . . . 12
| |
| 29 | 28 | oveq1i 5954 |
. . . . . . . . . . 11
|
| 30 | 29 | a1i 9 |
. . . . . . . . . 10
|
| 31 | sqcl 10745 |
. . . . . . . . . . 11
| |
| 32 | 31 | mulm1d 8482 |
. . . . . . . . . 10
|
| 33 | 27, 30, 32 | 3eqtrd 2242 |
. . . . . . . . 9
|
| 34 | 33 | oveq1d 5959 |
. . . . . . . 8
|
| 35 | 2cn 9107 |
. . . . . . . . . 10
| |
| 36 | 2ap0 9129 |
. . . . . . . . . 10
| |
| 37 | divnegap 8779 |
. . . . . . . . . 10
| |
| 38 | 35, 36, 37 | mp3an23 1342 |
. . . . . . . . 9
|
| 39 | 31, 38 | syl 14 |
. . . . . . . 8
|
| 40 | 34, 39 | eqtr4d 2241 |
. . . . . . 7
|
| 41 | 40 | oveq2d 5960 |
. . . . . 6
|
| 42 | 31 | halfcld 9282 |
. . . . . . 7
|
| 43 | negsub 8320 |
. . . . . . 7
| |
| 44 | 7, 42, 43 | sylancr 414 |
. . . . . 6
|
| 45 | 41, 44 | eqtrd 2238 |
. . . . 5
|
| 46 | mulexp 10723 |
. . . . . . . . . . 11
| |
| 47 | 1, 12, 46 | mp3an13 1341 |
. . . . . . . . . 10
|
| 48 | i3 10786 |
. . . . . . . . . . 11
| |
| 49 | 48 | oveq1i 5954 |
. . . . . . . . . 10
|
| 50 | 47, 49 | eqtrdi 2254 |
. . . . . . . . 9
|
| 51 | 50 | oveq1d 5959 |
. . . . . . . 8
|
| 52 | expcl 10702 |
. . . . . . . . . 10
| |
| 53 | 12, 52 | mpan2 425 |
. . . . . . . . 9
|
| 54 | negicn 8273 |
. . . . . . . . . 10
| |
| 55 | 15, 18 | pm3.2i 272 |
. . . . . . . . . 10
|
| 56 | divassap 8763 |
. . . . . . . . . 10
| |
| 57 | 54, 55, 56 | mp3an13 1341 |
. . . . . . . . 9
|
| 58 | 53, 57 | syl 14 |
. . . . . . . 8
|
| 59 | divclap 8751 |
. . . . . . . . . . 11
| |
| 60 | 15, 18, 59 | mp3an23 1342 |
. . . . . . . . . 10
|
| 61 | 53, 60 | syl 14 |
. . . . . . . . 9
|
| 62 | mulneg12 8469 |
. . . . . . . . 9
| |
| 63 | 1, 61, 62 | sylancr 414 |
. . . . . . . 8
|
| 64 | 51, 58, 63 | 3eqtrd 2242 |
. . . . . . 7
|
| 65 | 64 | oveq2d 5960 |
. . . . . 6
|
| 66 | 61 | negcld 8370 |
. . . . . . 7
|
| 67 | adddi 8057 |
. . . . . . . 8
| |
| 68 | 1, 67 | mp3an1 1337 |
. . . . . . 7
|
| 69 | 66, 68 | mpdan 421 |
. . . . . 6
|
| 70 | negsub 8320 |
. . . . . . . 8
| |
| 71 | 61, 70 | mpdan 421 |
. . . . . . 7
|
| 72 | 71 | oveq2d 5960 |
. . . . . 6
|
| 73 | 65, 69, 72 | 3eqtr2d 2244 |
. . . . 5
|
| 74 | 45, 73 | oveq12d 5962 |
. . . 4
|
| 75 | 22, 24, 74 | 3eqtrd 2242 |
. . 3
|
| 76 | 75 | oveq1d 5959 |
. 2
|
| 77 | 6, 76 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-oadd 6506 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-5 9098 df-6 9099 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-ico 10016 df-fz 10131 df-fzo 10265 df-seqfrec 10593 df-exp 10684 df-fac 10871 df-ihash 10921 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-clim 11590 df-sumdc 11665 df-ef 11959 |
| This theorem is referenced by: resin4p 12029 recos4p 12030 |
| Copyright terms: Public domain | W3C validator |