ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efi4p Unicode version

Theorem efi4p 11680
Description: Separate out the first four terms of the infinite series expansion of the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
efi4p.1  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
Assertion
Ref Expression
efi4p  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
Distinct variable groups:    A, k, n   
k, F
Allowed substitution hint:    F( n)

Proof of Theorem efi4p
StepHypRef Expression
1 ax-icn 7869 . . . 4  |-  _i  e.  CC
2 mulcl 7901 . . . 4  |-  ( ( _i  e.  CC  /\  A  e.  CC )  ->  ( _i  x.  A
)  e.  CC )
31, 2mpan 422 . . 3  |-  ( A  e.  CC  ->  (
_i  x.  A )  e.  CC )
4 efi4p.1 . . . 4  |-  F  =  ( n  e.  NN0  |->  ( ( ( _i  x.  A ) ^
n )  /  ( ! `  n )
) )
54ef4p 11657 . . 3  |-  ( ( _i  x.  A )  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( ( 1  +  ( _i  x.  A ) )  +  ( ( ( _i  x.  A ) ^ 2 )  / 
2 ) )  +  ( ( ( _i  x.  A ) ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
63, 5syl 14 . 2  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( ( 1  +  ( _i  x.  A ) )  +  ( ( ( _i  x.  A ) ^ 2 )  / 
2 ) )  +  ( ( ( _i  x.  A ) ^
3 )  /  6
) )  +  sum_ k  e.  ( ZZ>= ` 
4 ) ( F `
 k ) ) )
7 ax-1cn 7867 . . . . . 6  |-  1  e.  CC
8 addcl 7899 . . . . . 6  |-  ( ( 1  e.  CC  /\  ( _i  x.  A
)  e.  CC )  ->  ( 1  +  ( _i  x.  A
) )  e.  CC )
97, 3, 8sylancr 412 . . . . 5  |-  ( A  e.  CC  ->  (
1  +  ( _i  x.  A ) )  e.  CC )
103sqcld 10607 . . . . . 6  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  e.  CC )
1110halfcld 9122 . . . . 5  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 2 )  /  2 )  e.  CC )
12 3nn0 9153 . . . . . . 7  |-  3  e.  NN0
13 expcl 10494 . . . . . . 7  |-  ( ( ( _i  x.  A
)  e.  CC  /\  3  e.  NN0 )  -> 
( ( _i  x.  A ) ^ 3 )  e.  CC )
143, 12, 13sylancl 411 . . . . . 6  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 3 )  e.  CC )
15 6cn 8960 . . . . . . 7  |-  6  e.  CC
16 6re 8959 . . . . . . . 8  |-  6  e.  RR
17 6pos 8979 . . . . . . . 8  |-  0  <  6
1816, 17gt0ap0ii 8547 . . . . . . 7  |-  6 #  0
19 divclap 8595 . . . . . . 7  |-  ( ( ( ( _i  x.  A ) ^ 3 )  e.  CC  /\  6  e.  CC  /\  6 #  0 )  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  e.  CC )
2015, 18, 19mp3an23 1324 . . . . . 6  |-  ( ( ( _i  x.  A
) ^ 3 )  e.  CC  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  e.  CC )
2114, 20syl 14 . . . . 5  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  e.  CC )
229, 11, 21addassd 7942 . . . 4  |-  ( A  e.  CC  ->  (
( ( 1  +  ( _i  x.  A
) )  +  ( ( ( _i  x.  A ) ^ 2 )  /  2 ) )  +  ( ( ( _i  x.  A
) ^ 3 )  /  6 ) )  =  ( ( 1  +  ( _i  x.  A ) )  +  ( ( ( ( _i  x.  A ) ^ 2 )  / 
2 )  +  ( ( ( _i  x.  A ) ^ 3 )  /  6 ) ) ) )
237a1i 9 . . . . 5  |-  ( A  e.  CC  ->  1  e.  CC )
2423, 3, 11, 21add4d 8088 . . . 4  |-  ( A  e.  CC  ->  (
( 1  +  ( _i  x.  A ) )  +  ( ( ( ( _i  x.  A ) ^ 2 )  /  2 )  +  ( ( ( _i  x.  A ) ^ 3 )  / 
6 ) ) )  =  ( ( 1  +  ( ( ( _i  x.  A ) ^ 2 )  / 
2 ) )  +  ( ( _i  x.  A )  +  ( ( ( _i  x.  A ) ^ 3 )  /  6 ) ) ) )
25 2nn0 9152 . . . . . . . . . . 11  |-  2  e.  NN0
26 mulexp 10515 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  2  e.  NN0 )  ->  (
( _i  x.  A
) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( A ^ 2 ) ) )
271, 25, 26mp3an13 1323 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =  ( ( _i
^ 2 )  x.  ( A ^ 2 ) ) )
28 i2 10576 . . . . . . . . . . . 12  |-  ( _i
^ 2 )  = 
-u 1
2928oveq1i 5863 . . . . . . . . . . 11  |-  ( ( _i ^ 2 )  x.  ( A ^
2 ) )  =  ( -u 1  x.  ( A ^ 2 ) )
3029a1i 9 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( _i ^ 2 )  x.  ( A ^ 2 ) )  =  ( -u 1  x.  ( A ^ 2 ) ) )
31 sqcl 10537 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  ( A ^ 2 )  e.  CC )
3231mulm1d 8329 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( -u 1  x.  ( A ^ 2 ) )  =  -u ( A ^
2 ) )
3327, 30, 323eqtrd 2207 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 2 )  =  -u ( A ^
2 ) )
3433oveq1d 5868 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 2 )  /  2 )  =  ( -u ( A ^ 2 )  / 
2 ) )
35 2cn 8949 . . . . . . . . . 10  |-  2  e.  CC
36 2ap0 8971 . . . . . . . . . 10  |-  2 #  0
37 divnegap 8623 . . . . . . . . . 10  |-  ( ( ( A ^ 2 )  e.  CC  /\  2  e.  CC  /\  2 #  0 )  ->  -u (
( A ^ 2 )  /  2 )  =  ( -u ( A ^ 2 )  / 
2 ) )
3835, 36, 37mp3an23 1324 . . . . . . . . 9  |-  ( ( A ^ 2 )  e.  CC  ->  -u (
( A ^ 2 )  /  2 )  =  ( -u ( A ^ 2 )  / 
2 ) )
3931, 38syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  -u (
( A ^ 2 )  /  2 )  =  ( -u ( A ^ 2 )  / 
2 ) )
4034, 39eqtr4d 2206 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 2 )  /  2 )  =  -u ( ( A ^ 2 )  / 
2 ) )
4140oveq2d 5869 . . . . . 6  |-  ( A  e.  CC  ->  (
1  +  ( ( ( _i  x.  A
) ^ 2 )  /  2 ) )  =  ( 1  + 
-u ( ( A ^ 2 )  / 
2 ) ) )
4231halfcld 9122 . . . . . . 7  |-  ( A  e.  CC  ->  (
( A ^ 2 )  /  2 )  e.  CC )
43 negsub 8167 . . . . . . 7  |-  ( ( 1  e.  CC  /\  ( ( A ^
2 )  /  2
)  e.  CC )  ->  ( 1  + 
-u ( ( A ^ 2 )  / 
2 ) )  =  ( 1  -  (
( A ^ 2 )  /  2 ) ) )
447, 42, 43sylancr 412 . . . . . 6  |-  ( A  e.  CC  ->  (
1  +  -u (
( A ^ 2 )  /  2 ) )  =  ( 1  -  ( ( A ^ 2 )  / 
2 ) ) )
4541, 44eqtrd 2203 . . . . 5  |-  ( A  e.  CC  ->  (
1  +  ( ( ( _i  x.  A
) ^ 2 )  /  2 ) )  =  ( 1  -  ( ( A ^
2 )  /  2
) ) )
46 mulexp 10515 . . . . . . . . . . 11  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  3  e.  NN0 )  ->  (
( _i  x.  A
) ^ 3 )  =  ( ( _i
^ 3 )  x.  ( A ^ 3 ) ) )
471, 12, 46mp3an13 1323 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 3 )  =  ( ( _i
^ 3 )  x.  ( A ^ 3 ) ) )
48 i3 10577 . . . . . . . . . . 11  |-  ( _i
^ 3 )  = 
-u _i
4948oveq1i 5863 . . . . . . . . . 10  |-  ( ( _i ^ 3 )  x.  ( A ^
3 ) )  =  ( -u _i  x.  ( A ^ 3 ) )
5047, 49eqtrdi 2219 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( _i  x.  A
) ^ 3 )  =  ( -u _i  x.  ( A ^ 3 ) ) )
5150oveq1d 5868 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  =  ( ( -u _i  x.  ( A ^
3 ) )  / 
6 ) )
52 expcl 10494 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
5312, 52mpan2 423 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( A ^ 3 )  e.  CC )
54 negicn 8120 . . . . . . . . . 10  |-  -u _i  e.  CC
5515, 18pm3.2i 270 . . . . . . . . . 10  |-  ( 6  e.  CC  /\  6 #  0 )
56 divassap 8607 . . . . . . . . . 10  |-  ( (
-u _i  e.  CC  /\  ( A ^ 3 )  e.  CC  /\  ( 6  e.  CC  /\  6 #  0 ) )  ->  ( ( -u _i  x.  ( A ^
3 ) )  / 
6 )  =  (
-u _i  x.  (
( A ^ 3 )  /  6 ) ) )
5754, 55, 56mp3an13 1323 . . . . . . . . 9  |-  ( ( A ^ 3 )  e.  CC  ->  (
( -u _i  x.  ( A ^ 3 ) )  /  6 )  =  ( -u _i  x.  ( ( A ^
3 )  /  6
) ) )
5853, 57syl 14 . . . . . . . 8  |-  ( A  e.  CC  ->  (
( -u _i  x.  ( A ^ 3 ) )  /  6 )  =  ( -u _i  x.  ( ( A ^
3 )  /  6
) ) )
59 divclap 8595 . . . . . . . . . . 11  |-  ( ( ( A ^ 3 )  e.  CC  /\  6  e.  CC  /\  6 #  0 )  ->  (
( A ^ 3 )  /  6 )  e.  CC )
6015, 18, 59mp3an23 1324 . . . . . . . . . 10  |-  ( ( A ^ 3 )  e.  CC  ->  (
( A ^ 3 )  /  6 )  e.  CC )
6153, 60syl 14 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( A ^ 3 )  /  6 )  e.  CC )
62 mulneg12 8316 . . . . . . . . 9  |-  ( ( _i  e.  CC  /\  ( ( A ^
3 )  /  6
)  e.  CC )  ->  ( -u _i  x.  ( ( A ^
3 )  /  6
) )  =  ( _i  x.  -u (
( A ^ 3 )  /  6 ) ) )
631, 61, 62sylancr 412 . . . . . . . 8  |-  ( A  e.  CC  ->  ( -u _i  x.  ( ( A ^ 3 )  /  6 ) )  =  ( _i  x.  -u ( ( A ^
3 )  /  6
) ) )
6451, 58, 633eqtrd 2207 . . . . . . 7  |-  ( A  e.  CC  ->  (
( ( _i  x.  A ) ^ 3 )  /  6 )  =  ( _i  x.  -u ( ( A ^
3 )  /  6
) ) )
6564oveq2d 5869 . . . . . 6  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( ( ( _i  x.  A
) ^ 3 )  /  6 ) )  =  ( ( _i  x.  A )  +  ( _i  x.  -u (
( A ^ 3 )  /  6 ) ) ) )
6661negcld 8217 . . . . . . 7  |-  ( A  e.  CC  ->  -u (
( A ^ 3 )  /  6 )  e.  CC )
67 adddi 7906 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  A  e.  CC  /\  -u (
( A ^ 3 )  /  6 )  e.  CC )  -> 
( _i  x.  ( A  +  -u ( ( A ^ 3 )  /  6 ) ) )  =  ( ( _i  x.  A )  +  ( _i  x.  -u ( ( A ^
3 )  /  6
) ) ) )
681, 67mp3an1 1319 . . . . . . 7  |-  ( ( A  e.  CC  /\  -u ( ( A ^
3 )  /  6
)  e.  CC )  ->  ( _i  x.  ( A  +  -u (
( A ^ 3 )  /  6 ) ) )  =  ( ( _i  x.  A
)  +  ( _i  x.  -u ( ( A ^ 3 )  / 
6 ) ) ) )
6966, 68mpdan 419 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( A  +  -u ( ( A ^ 3 )  / 
6 ) ) )  =  ( ( _i  x.  A )  +  ( _i  x.  -u (
( A ^ 3 )  /  6 ) ) ) )
70 negsub 8167 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( ( A ^
3 )  /  6
)  e.  CC )  ->  ( A  +  -u ( ( A ^
3 )  /  6
) )  =  ( A  -  ( ( A ^ 3 )  /  6 ) ) )
7161, 70mpdan 419 . . . . . . 7  |-  ( A  e.  CC  ->  ( A  +  -u ( ( A ^ 3 )  /  6 ) )  =  ( A  -  ( ( A ^
3 )  /  6
) ) )
7271oveq2d 5869 . . . . . 6  |-  ( A  e.  CC  ->  (
_i  x.  ( A  +  -u ( ( A ^ 3 )  / 
6 ) ) )  =  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) ) )
7365, 69, 723eqtr2d 2209 . . . . 5  |-  ( A  e.  CC  ->  (
( _i  x.  A
)  +  ( ( ( _i  x.  A
) ^ 3 )  /  6 ) )  =  ( _i  x.  ( A  -  (
( A ^ 3 )  /  6 ) ) ) )
7445, 73oveq12d 5871 . . . 4  |-  ( A  e.  CC  ->  (
( 1  +  ( ( ( _i  x.  A ) ^ 2 )  /  2 ) )  +  ( ( _i  x.  A )  +  ( ( ( _i  x.  A ) ^ 3 )  / 
6 ) ) )  =  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) ) )
7522, 24, 743eqtrd 2207 . . 3  |-  ( A  e.  CC  ->  (
( ( 1  +  ( _i  x.  A
) )  +  ( ( ( _i  x.  A ) ^ 2 )  /  2 ) )  +  ( ( ( _i  x.  A
) ^ 3 )  /  6 ) )  =  ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) ) )
7675oveq1d 5868 . 2  |-  ( A  e.  CC  ->  (
( ( ( 1  +  ( _i  x.  A ) )  +  ( ( ( _i  x.  A ) ^
2 )  /  2
) )  +  ( ( ( _i  x.  A ) ^ 3 )  /  6 ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) )  =  ( ( ( 1  -  ( ( A ^
2 )  /  2
) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
776, 76eqtrd 2203 1  |-  ( A  e.  CC  ->  ( exp `  ( _i  x.  A ) )  =  ( ( ( 1  -  ( ( A ^ 2 )  / 
2 ) )  +  ( _i  x.  ( A  -  ( ( A ^ 3 )  / 
6 ) ) ) )  +  sum_ k  e.  ( ZZ>= `  4 )
( F `  k
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   class class class wbr 3989    |-> cmpt 4050   ` cfv 5198  (class class class)co 5853   CCcc 7772   0cc0 7774   1c1 7775   _ici 7776    + caddc 7777    x. cmul 7779    - cmin 8090   -ucneg 8091   # cap 8500    / cdiv 8589   2c2 8929   3c3 8930   4c4 8931   6c6 8933   NN0cn0 9135   ZZ>=cuz 9487   ^cexp 10475   !cfa 10659   sum_csu 11316   expce 11605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-oadd 6399  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-5 8940  df-6 8941  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-ico 9851  df-fz 9966  df-fzo 10099  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-ihash 10710  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611
This theorem is referenced by:  resin4p  11681  recos4p  11682
  Copyright terms: Public domain W3C validator