Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0opthd | Unicode version |
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers and by . If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3592 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.) |
Ref | Expression |
---|---|
nn0opthd.1 | |
nn0opthd.2 | |
nn0opthd.3 | |
nn0opthd.4 |
Ref | Expression |
---|---|
nn0opthd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opthd.1 | . . . . . . . . . . . . . . 15 | |
2 | nn0opthd.2 | . . . . . . . . . . . . . . 15 | |
3 | nn0opthd.3 | . . . . . . . . . . . . . . . 16 | |
4 | nn0opthd.4 | . . . . . . . . . . . . . . . 16 | |
5 | 3, 4 | nn0addcld 9192 | . . . . . . . . . . . . . . 15 |
6 | 1, 2, 5, 4 | nn0opthlem2d 10655 | . . . . . . . . . . . . . 14 |
7 | 6 | imp 123 | . . . . . . . . . . . . 13 |
8 | 7 | necomd 2426 | . . . . . . . . . . . 12 |
9 | 8 | ex 114 | . . . . . . . . . . 11 |
10 | 1, 2 | nn0addcld 9192 | . . . . . . . . . . . 12 |
11 | 3, 4, 10, 2 | nn0opthlem2d 10655 | . . . . . . . . . . 11 |
12 | 9, 11 | jaod 712 | . . . . . . . . . 10 |
13 | 10 | nn0red 9189 | . . . . . . . . . . 11 |
14 | 5 | nn0red 9189 | . . . . . . . . . . 11 |
15 | reaplt 8507 | . . . . . . . . . . 11 # | |
16 | 13, 14, 15 | syl2anc 409 | . . . . . . . . . 10 # |
17 | 10, 10 | nn0mulcld 9193 | . . . . . . . . . . . . 13 |
18 | 17, 2 | nn0addcld 9192 | . . . . . . . . . . . 12 |
19 | 18 | nn0zd 9332 | . . . . . . . . . . 11 |
20 | 5, 5 | nn0mulcld 9193 | . . . . . . . . . . . . 13 |
21 | 20, 4 | nn0addcld 9192 | . . . . . . . . . . . 12 |
22 | 21 | nn0zd 9332 | . . . . . . . . . . 11 |
23 | zapne 9286 | . . . . . . . . . . 11 # | |
24 | 19, 22, 23 | syl2anc 409 | . . . . . . . . . 10 # |
25 | 12, 16, 24 | 3imtr4d 202 | . . . . . . . . 9 # # |
26 | 25 | con3d 626 | . . . . . . . 8 # # |
27 | 18 | nn0cnd 9190 | . . . . . . . . 9 |
28 | 21 | nn0cnd 9190 | . . . . . . . . 9 |
29 | apti 8541 | . . . . . . . . 9 # | |
30 | 27, 28, 29 | syl2anc 409 | . . . . . . . 8 # |
31 | 10 | nn0cnd 9190 | . . . . . . . . 9 |
32 | 5 | nn0cnd 9190 | . . . . . . . . 9 |
33 | apti 8541 | . . . . . . . . 9 # | |
34 | 31, 32, 33 | syl2anc 409 | . . . . . . . 8 # |
35 | 26, 30, 34 | 3imtr4d 202 | . . . . . . 7 |
36 | 35 | imp 123 | . . . . . 6 |
37 | simpr 109 | . . . . . . . . 9 | |
38 | 36, 36 | oveq12d 5871 | . . . . . . . . . 10 |
39 | 38 | oveq1d 5868 | . . . . . . . . 9 |
40 | 37, 39 | eqtr4d 2206 | . . . . . . . 8 |
41 | 31, 31 | mulcld 7940 | . . . . . . . . . 10 |
42 | 2 | nn0cnd 9190 | . . . . . . . . . 10 |
43 | 4 | nn0cnd 9190 | . . . . . . . . . 10 |
44 | 41, 42, 43 | addcand 8103 | . . . . . . . . 9 |
45 | 44 | adantr 274 | . . . . . . . 8 |
46 | 40, 45 | mpbid 146 | . . . . . . 7 |
47 | 46 | oveq2d 5869 | . . . . . 6 |
48 | 36, 47 | eqtr4d 2206 | . . . . 5 |
49 | 1 | nn0cnd 9190 | . . . . . . 7 |
50 | 3 | nn0cnd 9190 | . . . . . . 7 |
51 | 49, 50, 42 | addcan2d 8104 | . . . . . 6 |
52 | 51 | adantr 274 | . . . . 5 |
53 | 48, 52 | mpbid 146 | . . . 4 |
54 | 53, 46 | jca 304 | . . 3 |
55 | 54 | ex 114 | . 2 |
56 | oveq12 5862 | . . . 4 | |
57 | 56, 56 | oveq12d 5871 | . . 3 |
58 | simpr 109 | . . 3 | |
59 | 57, 58 | oveq12d 5871 | . 2 |
60 | 55, 59 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 wne 2340 class class class wbr 3989 (class class class)co 5853 cc 7772 cr 7773 caddc 7777 cmul 7779 clt 7954 # cap 8500 cn0 9135 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 df-exp 10476 |
This theorem is referenced by: nn0opth2d 10657 |
Copyright terms: Public domain | W3C validator |