| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0opthd | Unicode version | ||
| Description: An ordered pair theorem
for nonnegative integers. Theorem 17.3 of
[Quine] p. 124. We can represent an
ordered pair of nonnegative
integers |
| Ref | Expression |
|---|---|
| nn0opthd.1 |
|
| nn0opthd.2 |
|
| nn0opthd.3 |
|
| nn0opthd.4 |
|
| Ref | Expression |
|---|---|
| nn0opthd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opthd.1 |
. . . . . . . . . . . . . . 15
| |
| 2 | nn0opthd.2 |
. . . . . . . . . . . . . . 15
| |
| 3 | nn0opthd.3 |
. . . . . . . . . . . . . . . 16
| |
| 4 | nn0opthd.4 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | nn0addcld 9387 |
. . . . . . . . . . . . . . 15
|
| 6 | 1, 2, 5, 4 | nn0opthlem2d 10903 |
. . . . . . . . . . . . . 14
|
| 7 | 6 | imp 124 |
. . . . . . . . . . . . 13
|
| 8 | 7 | necomd 2464 |
. . . . . . . . . . . 12
|
| 9 | 8 | ex 115 |
. . . . . . . . . . 11
|
| 10 | 1, 2 | nn0addcld 9387 |
. . . . . . . . . . . 12
|
| 11 | 3, 4, 10, 2 | nn0opthlem2d 10903 |
. . . . . . . . . . 11
|
| 12 | 9, 11 | jaod 719 |
. . . . . . . . . 10
|
| 13 | 10 | nn0red 9384 |
. . . . . . . . . . 11
|
| 14 | 5 | nn0red 9384 |
. . . . . . . . . . 11
|
| 15 | reaplt 8696 |
. . . . . . . . . . 11
| |
| 16 | 13, 14, 15 | syl2anc 411 |
. . . . . . . . . 10
|
| 17 | 10, 10 | nn0mulcld 9388 |
. . . . . . . . . . . . 13
|
| 18 | 17, 2 | nn0addcld 9387 |
. . . . . . . . . . . 12
|
| 19 | 18 | nn0zd 9528 |
. . . . . . . . . . 11
|
| 20 | 5, 5 | nn0mulcld 9388 |
. . . . . . . . . . . . 13
|
| 21 | 20, 4 | nn0addcld 9387 |
. . . . . . . . . . . 12
|
| 22 | 21 | nn0zd 9528 |
. . . . . . . . . . 11
|
| 23 | zapne 9482 |
. . . . . . . . . . 11
| |
| 24 | 19, 22, 23 | syl2anc 411 |
. . . . . . . . . 10
|
| 25 | 12, 16, 24 | 3imtr4d 203 |
. . . . . . . . 9
|
| 26 | 25 | con3d 632 |
. . . . . . . 8
|
| 27 | 18 | nn0cnd 9385 |
. . . . . . . . 9
|
| 28 | 21 | nn0cnd 9385 |
. . . . . . . . 9
|
| 29 | apti 8730 |
. . . . . . . . 9
| |
| 30 | 27, 28, 29 | syl2anc 411 |
. . . . . . . 8
|
| 31 | 10 | nn0cnd 9385 |
. . . . . . . . 9
|
| 32 | 5 | nn0cnd 9385 |
. . . . . . . . 9
|
| 33 | apti 8730 |
. . . . . . . . 9
| |
| 34 | 31, 32, 33 | syl2anc 411 |
. . . . . . . 8
|
| 35 | 26, 30, 34 | 3imtr4d 203 |
. . . . . . 7
|
| 36 | 35 | imp 124 |
. . . . . 6
|
| 37 | simpr 110 |
. . . . . . . . 9
| |
| 38 | 36, 36 | oveq12d 5985 |
. . . . . . . . . 10
|
| 39 | 38 | oveq1d 5982 |
. . . . . . . . 9
|
| 40 | 37, 39 | eqtr4d 2243 |
. . . . . . . 8
|
| 41 | 31, 31 | mulcld 8128 |
. . . . . . . . . 10
|
| 42 | 2 | nn0cnd 9385 |
. . . . . . . . . 10
|
| 43 | 4 | nn0cnd 9385 |
. . . . . . . . . 10
|
| 44 | 41, 42, 43 | addcand 8291 |
. . . . . . . . 9
|
| 45 | 44 | adantr 276 |
. . . . . . . 8
|
| 46 | 40, 45 | mpbid 147 |
. . . . . . 7
|
| 47 | 46 | oveq2d 5983 |
. . . . . 6
|
| 48 | 36, 47 | eqtr4d 2243 |
. . . . 5
|
| 49 | 1 | nn0cnd 9385 |
. . . . . . 7
|
| 50 | 3 | nn0cnd 9385 |
. . . . . . 7
|
| 51 | 49, 50, 42 | addcan2d 8292 |
. . . . . 6
|
| 52 | 51 | adantr 276 |
. . . . 5
|
| 53 | 48, 52 | mpbid 147 |
. . . 4
|
| 54 | 53, 46 | jca 306 |
. . 3
|
| 55 | 54 | ex 115 |
. 2
|
| 56 | oveq12 5976 |
. . . 4
| |
| 57 | 56, 56 | oveq12d 5985 |
. . 3
|
| 58 | simpr 110 |
. . 3
| |
| 59 | 57, 58 | oveq12d 5985 |
. 2
|
| 60 | 55, 59 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-n0 9331 df-z 9408 df-uz 9684 df-seqfrec 10630 df-exp 10721 |
| This theorem is referenced by: nn0opth2d 10905 |
| Copyright terms: Public domain | W3C validator |