ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthd Unicode version

Theorem nn0opthd 10793
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers  A and  B by  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3627 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthd.2  |-  ( ph  ->  B  e.  NN0 )
nn0opthd.3  |-  ( ph  ->  C  e.  NN0 )
nn0opthd.4  |-  ( ph  ->  D  e.  NN0 )
Assertion
Ref Expression
nn0opthd  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem nn0opthd
StepHypRef Expression
1 nn0opthd.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  NN0 )
2 nn0opthd.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  NN0 )
3 nn0opthd.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  NN0 )
4 nn0opthd.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  NN0 )
53, 4nn0addcld 9297 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  +  D
)  e.  NN0 )
61, 2, 5, 4nn0opthlem2d 10792 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  +  B )  <  ( C  +  D )  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  =/=  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) ) )
76imp 124 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A  +  B )  <  ( C  +  D )
)  ->  ( (
( C  +  D
)  x.  ( C  +  D ) )  +  D )  =/=  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
) )
87necomd 2450 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  +  B )  <  ( C  +  D )
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )
98ex 115 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  +  B )  <  ( C  +  D )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
101, 2nn0addcld 9297 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  B
)  e.  NN0 )
113, 4, 10, 2nn0opthlem2d 10792 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  +  D )  <  ( A  +  B )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
129, 11jaod 718 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  +  B )  < 
( C  +  D
)  \/  ( C  +  D )  < 
( A  +  B
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) ) )
1310nn0red 9294 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  B
)  e.  RR )
145nn0red 9294 . . . . . . . . . . 11  |-  ( ph  ->  ( C  +  D
)  e.  RR )
15 reaplt 8607 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( A  +  B ) #  ( C  +  D )  <-> 
( ( A  +  B )  <  ( C  +  D )  \/  ( C  +  D
)  <  ( A  +  B ) ) ) )
1613, 14, 15syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B ) #  ( C  +  D )  <->  ( ( A  +  B )  <  ( C  +  D
)  \/  ( C  +  D )  < 
( A  +  B
) ) ) )
1710, 10nn0mulcld 9298 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  NN0 )
1817, 2nn0addcld 9297 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  NN0 )
1918nn0zd 9437 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  ZZ )
205, 5nn0mulcld 9298 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  +  D )  x.  ( C  +  D )
)  e.  NN0 )
2120, 4nn0addcld 9297 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  NN0 )
2221nn0zd 9437 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  ZZ )
23 zapne 9391 . . . . . . . . . . 11  |-  ( ( ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  ZZ  /\  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  ZZ )  ->  ( ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
2419, 22, 23syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D )  <->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) ) )
2512, 16, 243imtr4d 203 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B ) #  ( C  +  D )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) ) )
2625con3d 632 . . . . . . . 8  |-  ( ph  ->  ( -.  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  -.  ( A  +  B ) #  ( C  +  D ) ) )
2718nn0cnd 9295 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  CC )
2821nn0cnd 9295 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  CC )
29 apti 8641 . . . . . . . . 9  |-  ( ( ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  CC  /\  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  CC )  ->  ( ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  <->  -.  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D ) ) )
3027, 28, 29syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <->  -.  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
) #  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) ) )
3110nn0cnd 9295 . . . . . . . . 9  |-  ( ph  ->  ( A  +  B
)  e.  CC )
325nn0cnd 9295 . . . . . . . . 9  |-  ( ph  ->  ( C  +  D
)  e.  CC )
33 apti 8641 . . . . . . . . 9  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC )  ->  ( ( A  +  B )  =  ( C  +  D
)  <->  -.  ( A  +  B ) #  ( C  +  D ) ) )
3431, 32, 33syl2anc 411 . . . . . . . 8  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  D )  <->  -.  ( A  +  B
) #  ( C  +  D ) ) )
3526, 30, 343imtr4d 203 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  ( A  +  B )  =  ( C  +  D ) ) )
3635imp 124 . . . . . 6  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  +  B )  =  ( C  +  D ) )
37 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
3836, 36oveq12d 5936 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( A  +  B
)  x.  ( A  +  B ) )  =  ( ( C  +  D )  x.  ( C  +  D
) ) )
3938oveq1d 5933 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  D )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
4037, 39eqtr4d 2229 . . . . . . . 8  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  D ) )
4131, 31mulcld 8040 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  CC )
422nn0cnd 9295 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
434nn0cnd 9295 . . . . . . . . . 10  |-  ( ph  ->  D  e.  CC )
4441, 42, 43addcand 8203 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B )
)  +  D )  <-> 
B  =  D ) )
4544adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  D )  <->  B  =  D ) )
4640, 45mpbid 147 . . . . . . 7  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  B  =  D )
4746oveq2d 5934 . . . . . 6  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( C  +  B )  =  ( C  +  D ) )
4836, 47eqtr4d 2229 . . . . 5  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  +  B )  =  ( C  +  B ) )
491nn0cnd 9295 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
503nn0cnd 9295 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
5149, 50, 42addcan2d 8204 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  B )  <-> 
A  =  C ) )
5251adantr 276 . . . . 5  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( A  +  B
)  =  ( C  +  B )  <->  A  =  C ) )
5348, 52mpbid 147 . . . 4  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  A  =  C )
5453, 46jca 306 . . 3  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  =  C  /\  B  =  D )
)
5554ex 115 . 2  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  ( A  =  C  /\  B  =  D ) ) )
56 oveq12 5927 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  +  B
)  =  ( C  +  D ) )
5756, 56oveq12d 5936 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( C  +  D )  x.  ( C  +  D ) ) )
58 simpr 110 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  B  =  D )
5957, 58oveq12d 5936 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) )
6055, 59impbid1 142 1  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871    + caddc 7875    x. cmul 7877    < clt 8054   # cap 8600   NN0cn0 9240   ZZcz 9317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  nn0opth2d  10794
  Copyright terms: Public domain W3C validator