ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthd Unicode version

Theorem nn0opthd 10656
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers  A and  B by  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3592 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthd.2  |-  ( ph  ->  B  e.  NN0 )
nn0opthd.3  |-  ( ph  ->  C  e.  NN0 )
nn0opthd.4  |-  ( ph  ->  D  e.  NN0 )
Assertion
Ref Expression
nn0opthd  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem nn0opthd
StepHypRef Expression
1 nn0opthd.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  NN0 )
2 nn0opthd.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  NN0 )
3 nn0opthd.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  NN0 )
4 nn0opthd.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  NN0 )
53, 4nn0addcld 9192 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  +  D
)  e.  NN0 )
61, 2, 5, 4nn0opthlem2d 10655 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  +  B )  <  ( C  +  D )  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  =/=  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) ) )
76imp 123 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A  +  B )  <  ( C  +  D )
)  ->  ( (
( C  +  D
)  x.  ( C  +  D ) )  +  D )  =/=  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
) )
87necomd 2426 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  +  B )  <  ( C  +  D )
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )
98ex 114 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  +  B )  <  ( C  +  D )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
101, 2nn0addcld 9192 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  B
)  e.  NN0 )
113, 4, 10, 2nn0opthlem2d 10655 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  +  D )  <  ( A  +  B )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
129, 11jaod 712 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  +  B )  < 
( C  +  D
)  \/  ( C  +  D )  < 
( A  +  B
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) ) )
1310nn0red 9189 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  B
)  e.  RR )
145nn0red 9189 . . . . . . . . . . 11  |-  ( ph  ->  ( C  +  D
)  e.  RR )
15 reaplt 8507 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( A  +  B ) #  ( C  +  D )  <-> 
( ( A  +  B )  <  ( C  +  D )  \/  ( C  +  D
)  <  ( A  +  B ) ) ) )
1613, 14, 15syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B ) #  ( C  +  D )  <->  ( ( A  +  B )  <  ( C  +  D
)  \/  ( C  +  D )  < 
( A  +  B
) ) ) )
1710, 10nn0mulcld 9193 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  NN0 )
1817, 2nn0addcld 9192 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  NN0 )
1918nn0zd 9332 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  ZZ )
205, 5nn0mulcld 9193 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  +  D )  x.  ( C  +  D )
)  e.  NN0 )
2120, 4nn0addcld 9192 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  NN0 )
2221nn0zd 9332 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  ZZ )
23 zapne 9286 . . . . . . . . . . 11  |-  ( ( ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  ZZ  /\  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  ZZ )  ->  ( ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
2419, 22, 23syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D )  <->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) ) )
2512, 16, 243imtr4d 202 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B ) #  ( C  +  D )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) ) )
2625con3d 626 . . . . . . . 8  |-  ( ph  ->  ( -.  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  -.  ( A  +  B ) #  ( C  +  D ) ) )
2718nn0cnd 9190 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  CC )
2821nn0cnd 9190 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  CC )
29 apti 8541 . . . . . . . . 9  |-  ( ( ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  CC  /\  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  CC )  ->  ( ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  <->  -.  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D ) ) )
3027, 28, 29syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <->  -.  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
) #  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) ) )
3110nn0cnd 9190 . . . . . . . . 9  |-  ( ph  ->  ( A  +  B
)  e.  CC )
325nn0cnd 9190 . . . . . . . . 9  |-  ( ph  ->  ( C  +  D
)  e.  CC )
33 apti 8541 . . . . . . . . 9  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC )  ->  ( ( A  +  B )  =  ( C  +  D
)  <->  -.  ( A  +  B ) #  ( C  +  D ) ) )
3431, 32, 33syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  D )  <->  -.  ( A  +  B
) #  ( C  +  D ) ) )
3526, 30, 343imtr4d 202 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  ( A  +  B )  =  ( C  +  D ) ) )
3635imp 123 . . . . . 6  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  +  B )  =  ( C  +  D ) )
37 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
3836, 36oveq12d 5871 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( A  +  B
)  x.  ( A  +  B ) )  =  ( ( C  +  D )  x.  ( C  +  D
) ) )
3938oveq1d 5868 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  D )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
4037, 39eqtr4d 2206 . . . . . . . 8  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  D ) )
4131, 31mulcld 7940 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  CC )
422nn0cnd 9190 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
434nn0cnd 9190 . . . . . . . . . 10  |-  ( ph  ->  D  e.  CC )
4441, 42, 43addcand 8103 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B )
)  +  D )  <-> 
B  =  D ) )
4544adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  D )  <->  B  =  D ) )
4640, 45mpbid 146 . . . . . . 7  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  B  =  D )
4746oveq2d 5869 . . . . . 6  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( C  +  B )  =  ( C  +  D ) )
4836, 47eqtr4d 2206 . . . . 5  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  +  B )  =  ( C  +  B ) )
491nn0cnd 9190 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
503nn0cnd 9190 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
5149, 50, 42addcan2d 8104 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  B )  <-> 
A  =  C ) )
5251adantr 274 . . . . 5  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( A  +  B
)  =  ( C  +  B )  <->  A  =  C ) )
5348, 52mpbid 146 . . . 4  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  A  =  C )
5453, 46jca 304 . . 3  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  =  C  /\  B  =  D )
)
5554ex 114 . 2  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  ( A  =  C  /\  B  =  D ) ) )
56 oveq12 5862 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  +  B
)  =  ( C  +  D ) )
5756, 56oveq12d 5871 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( C  +  D )  x.  ( C  +  D ) ) )
58 simpr 109 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  B  =  D )
5957, 58oveq12d 5871 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) )
6055, 59impbid1 141 1  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773    + caddc 7777    x. cmul 7779    < clt 7954   # cap 8500   NN0cn0 9135   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  nn0opth2d  10657
  Copyright terms: Public domain W3C validator