Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0opthd | Unicode version |
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers and by . If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3585 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.) |
Ref | Expression |
---|---|
nn0opthd.1 | |
nn0opthd.2 | |
nn0opthd.3 | |
nn0opthd.4 |
Ref | Expression |
---|---|
nn0opthd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opthd.1 | . . . . . . . . . . . . . . 15 | |
2 | nn0opthd.2 | . . . . . . . . . . . . . . 15 | |
3 | nn0opthd.3 | . . . . . . . . . . . . . . . 16 | |
4 | nn0opthd.4 | . . . . . . . . . . . . . . . 16 | |
5 | 3, 4 | nn0addcld 9171 | . . . . . . . . . . . . . . 15 |
6 | 1, 2, 5, 4 | nn0opthlem2d 10634 | . . . . . . . . . . . . . 14 |
7 | 6 | imp 123 | . . . . . . . . . . . . 13 |
8 | 7 | necomd 2422 | . . . . . . . . . . . 12 |
9 | 8 | ex 114 | . . . . . . . . . . 11 |
10 | 1, 2 | nn0addcld 9171 | . . . . . . . . . . . 12 |
11 | 3, 4, 10, 2 | nn0opthlem2d 10634 | . . . . . . . . . . 11 |
12 | 9, 11 | jaod 707 | . . . . . . . . . 10 |
13 | 10 | nn0red 9168 | . . . . . . . . . . 11 |
14 | 5 | nn0red 9168 | . . . . . . . . . . 11 |
15 | reaplt 8486 | . . . . . . . . . . 11 # | |
16 | 13, 14, 15 | syl2anc 409 | . . . . . . . . . 10 # |
17 | 10, 10 | nn0mulcld 9172 | . . . . . . . . . . . . 13 |
18 | 17, 2 | nn0addcld 9171 | . . . . . . . . . . . 12 |
19 | 18 | nn0zd 9311 | . . . . . . . . . . 11 |
20 | 5, 5 | nn0mulcld 9172 | . . . . . . . . . . . . 13 |
21 | 20, 4 | nn0addcld 9171 | . . . . . . . . . . . 12 |
22 | 21 | nn0zd 9311 | . . . . . . . . . . 11 |
23 | zapne 9265 | . . . . . . . . . . 11 # | |
24 | 19, 22, 23 | syl2anc 409 | . . . . . . . . . 10 # |
25 | 12, 16, 24 | 3imtr4d 202 | . . . . . . . . 9 # # |
26 | 25 | con3d 621 | . . . . . . . 8 # # |
27 | 18 | nn0cnd 9169 | . . . . . . . . 9 |
28 | 21 | nn0cnd 9169 | . . . . . . . . 9 |
29 | apti 8520 | . . . . . . . . 9 # | |
30 | 27, 28, 29 | syl2anc 409 | . . . . . . . 8 # |
31 | 10 | nn0cnd 9169 | . . . . . . . . 9 |
32 | 5 | nn0cnd 9169 | . . . . . . . . 9 |
33 | apti 8520 | . . . . . . . . 9 # | |
34 | 31, 32, 33 | syl2anc 409 | . . . . . . . 8 # |
35 | 26, 30, 34 | 3imtr4d 202 | . . . . . . 7 |
36 | 35 | imp 123 | . . . . . 6 |
37 | simpr 109 | . . . . . . . . 9 | |
38 | 36, 36 | oveq12d 5860 | . . . . . . . . . 10 |
39 | 38 | oveq1d 5857 | . . . . . . . . 9 |
40 | 37, 39 | eqtr4d 2201 | . . . . . . . 8 |
41 | 31, 31 | mulcld 7919 | . . . . . . . . . 10 |
42 | 2 | nn0cnd 9169 | . . . . . . . . . 10 |
43 | 4 | nn0cnd 9169 | . . . . . . . . . 10 |
44 | 41, 42, 43 | addcand 8082 | . . . . . . . . 9 |
45 | 44 | adantr 274 | . . . . . . . 8 |
46 | 40, 45 | mpbid 146 | . . . . . . 7 |
47 | 46 | oveq2d 5858 | . . . . . 6 |
48 | 36, 47 | eqtr4d 2201 | . . . . 5 |
49 | 1 | nn0cnd 9169 | . . . . . . 7 |
50 | 3 | nn0cnd 9169 | . . . . . . 7 |
51 | 49, 50, 42 | addcan2d 8083 | . . . . . 6 |
52 | 51 | adantr 274 | . . . . 5 |
53 | 48, 52 | mpbid 146 | . . . 4 |
54 | 53, 46 | jca 304 | . . 3 |
55 | 54 | ex 114 | . 2 |
56 | oveq12 5851 | . . . 4 | |
57 | 56, 56 | oveq12d 5860 | . . 3 |
58 | simpr 109 | . . 3 | |
59 | 57, 58 | oveq12d 5860 | . 2 |
60 | 55, 59 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wne 2336 class class class wbr 3982 (class class class)co 5842 cc 7751 cr 7752 caddc 7756 cmul 7758 clt 7933 # cap 8479 cn0 9114 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-frec 6359 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-uz 9467 df-seqfrec 10381 df-exp 10455 |
This theorem is referenced by: nn0opth2d 10636 |
Copyright terms: Public domain | W3C validator |