ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0opthd Unicode version

Theorem nn0opthd 10635
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers  A and  B by  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3585 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
Hypotheses
Ref Expression
nn0opthd.1  |-  ( ph  ->  A  e.  NN0 )
nn0opthd.2  |-  ( ph  ->  B  e.  NN0 )
nn0opthd.3  |-  ( ph  ->  C  e.  NN0 )
nn0opthd.4  |-  ( ph  ->  D  e.  NN0 )
Assertion
Ref Expression
nn0opthd  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem nn0opthd
StepHypRef Expression
1 nn0opthd.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  NN0 )
2 nn0opthd.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  NN0 )
3 nn0opthd.3 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  NN0 )
4 nn0opthd.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  D  e.  NN0 )
53, 4nn0addcld 9171 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  +  D
)  e.  NN0 )
61, 2, 5, 4nn0opthlem2d 10634 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  +  B )  <  ( C  +  D )  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  =/=  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) ) )
76imp 123 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( A  +  B )  <  ( C  +  D )
)  ->  ( (
( C  +  D
)  x.  ( C  +  D ) )  +  D )  =/=  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
) )
87necomd 2422 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( A  +  B )  <  ( C  +  D )
)  ->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )
98ex 114 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  +  B )  <  ( C  +  D )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
101, 2nn0addcld 9171 . . . . . . . . . . . 12  |-  ( ph  ->  ( A  +  B
)  e.  NN0 )
113, 4, 10, 2nn0opthlem2d 10634 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  +  D )  <  ( A  +  B )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
129, 11jaod 707 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( A  +  B )  < 
( C  +  D
)  \/  ( C  +  D )  < 
( A  +  B
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) ) )
1310nn0red 9168 . . . . . . . . . . 11  |-  ( ph  ->  ( A  +  B
)  e.  RR )
145nn0red 9168 . . . . . . . . . . 11  |-  ( ph  ->  ( C  +  D
)  e.  RR )
15 reaplt 8486 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  RR  /\  ( C  +  D
)  e.  RR )  ->  ( ( A  +  B ) #  ( C  +  D )  <-> 
( ( A  +  B )  <  ( C  +  D )  \/  ( C  +  D
)  <  ( A  +  B ) ) ) )
1613, 14, 15syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B ) #  ( C  +  D )  <->  ( ( A  +  B )  <  ( C  +  D
)  \/  ( C  +  D )  < 
( A  +  B
) ) ) )
1710, 10nn0mulcld 9172 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  NN0 )
1817, 2nn0addcld 9171 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  NN0 )
1918nn0zd 9311 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  ZZ )
205, 5nn0mulcld 9172 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( C  +  D )  x.  ( C  +  D )
)  e.  NN0 )
2120, 4nn0addcld 9171 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  NN0 )
2221nn0zd 9311 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  ZZ )
23 zapne 9265 . . . . . . . . . . 11  |-  ( ( ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  ZZ  /\  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  ZZ )  ->  ( ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =/=  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) ) )
2419, 22, 23syl2anc 409 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D )  <->  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =/=  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) ) )
2512, 16, 243imtr4d 202 . . . . . . . . 9  |-  ( ph  ->  ( ( A  +  B ) #  ( C  +  D )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) ) )
2625con3d 621 . . . . . . . 8  |-  ( ph  ->  ( -.  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  -.  ( A  +  B ) #  ( C  +  D ) ) )
2718nn0cnd 9169 . . . . . . . . 9  |-  ( ph  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  CC )
2821nn0cnd 9169 . . . . . . . . 9  |-  ( ph  ->  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  CC )
29 apti 8520 . . . . . . . . 9  |-  ( ( ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  e.  CC  /\  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  e.  CC )  ->  ( ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
)  <->  -.  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B ) #  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D ) ) )
3027, 28, 29syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <->  -.  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
) #  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) ) )
3110nn0cnd 9169 . . . . . . . . 9  |-  ( ph  ->  ( A  +  B
)  e.  CC )
325nn0cnd 9169 . . . . . . . . 9  |-  ( ph  ->  ( C  +  D
)  e.  CC )
33 apti 8520 . . . . . . . . 9  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC )  ->  ( ( A  +  B )  =  ( C  +  D
)  <->  -.  ( A  +  B ) #  ( C  +  D ) ) )
3431, 32, 33syl2anc 409 . . . . . . . 8  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  D )  <->  -.  ( A  +  B
) #  ( C  +  D ) ) )
3526, 30, 343imtr4d 202 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  ( A  +  B )  =  ( C  +  D ) ) )
3635imp 123 . . . . . 6  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  +  B )  =  ( C  +  D ) )
37 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
3836, 36oveq12d 5860 . . . . . . . . . 10  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( A  +  B
)  x.  ( A  +  B ) )  =  ( ( C  +  D )  x.  ( C  +  D
) ) )
3938oveq1d 5857 . . . . . . . . 9  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  D )  =  ( ( ( C  +  D )  x.  ( C  +  D ) )  +  D ) )
4037, 39eqtr4d 2201 . . . . . . . 8  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  D ) )
4131, 31mulcld 7919 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  +  B )  x.  ( A  +  B )
)  e.  CC )
422nn0cnd 9169 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CC )
434nn0cnd 9169 . . . . . . . . . 10  |-  ( ph  ->  D  e.  CC )
4441, 42, 43addcand 8082 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( A  +  B )  x.  ( A  +  B )
)  +  D )  <-> 
B  =  D ) )
4544adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =  ( ( ( A  +  B
)  x.  ( A  +  B ) )  +  D )  <->  B  =  D ) )
4640, 45mpbid 146 . . . . . . 7  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  B  =  D )
4746oveq2d 5858 . . . . . 6  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( C  +  B )  =  ( C  +  D ) )
4836, 47eqtr4d 2201 . . . . 5  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  +  B )  =  ( C  +  B ) )
491nn0cnd 9169 . . . . . . 7  |-  ( ph  ->  A  e.  CC )
503nn0cnd 9169 . . . . . . 7  |-  ( ph  ->  C  e.  CC )
5149, 50, 42addcan2d 8083 . . . . . 6  |-  ( ph  ->  ( ( A  +  B )  =  ( C  +  B )  <-> 
A  =  C ) )
5251adantr 274 . . . . 5  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  (
( A  +  B
)  =  ( C  +  B )  <->  A  =  C ) )
5348, 52mpbid 146 . . . 4  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  A  =  C )
5453, 46jca 304 . . 3  |-  ( (
ph  /\  ( (
( A  +  B
)  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D
) )  +  D
) )  ->  ( A  =  C  /\  B  =  D )
)
5554ex 114 . 2  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  ->  ( A  =  C  /\  B  =  D ) ) )
56 oveq12 5851 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  +  B
)  =  ( C  +  D ) )
5756, 56oveq12d 5860 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( C  +  D )  x.  ( C  +  D ) ) )
58 simpr 109 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  B  =  D )
5957, 58oveq12d 5860 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( ( ( A  +  B )  x.  ( A  +  B
) )  +  B
)  =  ( ( ( C  +  D
)  x.  ( C  +  D ) )  +  D ) )
6055, 59impbid1 141 1  |-  ( ph  ->  ( ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( ( ( C  +  D )  x.  ( C  +  D )
)  +  D )  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136    =/= wne 2336   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752    + caddc 7756    x. cmul 7758    < clt 7933   # cap 8479   NN0cn0 9114   ZZcz 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-seqfrec 10381  df-exp 10455
This theorem is referenced by:  nn0opth2d  10636
  Copyright terms: Public domain W3C validator