Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2 | Unicode version |
Description: is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
addid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7899 | . . 3 | |
2 | addcom 8043 | . . 3 | |
3 | 1, 2 | mpan2 423 | . 2 |
4 | addid1 8044 | . 2 | |
5 | 3, 4 | eqtr3d 2205 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5850 cc 7759 cc0 7761 caddc 7764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7854 ax-icn 7856 ax-addcl 7857 ax-mulcl 7859 ax-addcom 7861 ax-i2m1 7866 ax-0id 7869 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: readdcan 8046 addid2i 8049 addid2d 8056 cnegexlem1 8081 cnegexlem2 8082 addcan 8086 negneg 8156 fz0to4untppr 10067 fzoaddel2 10136 divfl0 10239 modqid 10292 sumrbdclem 11327 summodclem2a 11331 fisum0diag2 11397 eftlub 11640 gcdid 11928 ptolemy 13498 |
Copyright terms: Public domain | W3C validator |