| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqid | Unicode version | ||
| Description: Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . 3
| |
| 2 | simplr 528 |
. . 3
| |
| 3 | 0red 8046 |
. . . 4
| |
| 4 | qre 9718 |
. . . . 5
| |
| 5 | 4 | ad2antrr 488 |
. . . 4
|
| 6 | qre 9718 |
. . . . 5
| |
| 7 | 6 | ad2antlr 489 |
. . . 4
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | 3, 5, 7, 8, 9 | lelttrd 8170 |
. . 3
|
| 11 | modqval 10435 |
. . 3
| |
| 12 | 1, 2, 10, 11 | syl3anc 1249 |
. 2
|
| 13 | 10 | gt0ne0d 8558 |
. . . . . . . . 9
|
| 14 | qdivcl 9736 |
. . . . . . . . 9
| |
| 15 | 1, 2, 13, 14 | syl3anc 1249 |
. . . . . . . 8
|
| 16 | qcn 9727 |
. . . . . . . 8
| |
| 17 | addlid 8184 |
. . . . . . . . 9
| |
| 18 | 17 | fveq2d 5565 |
. . . . . . . 8
|
| 19 | 15, 16, 18 | 3syl 17 |
. . . . . . 7
|
| 20 | divge0 8919 |
. . . . . . . . 9
| |
| 21 | 5, 8, 7, 10, 20 | syl22anc 1250 |
. . . . . . . 8
|
| 22 | 7 | recnd 8074 |
. . . . . . . . . . 11
|
| 23 | 22 | mulridd 8062 |
. . . . . . . . . 10
|
| 24 | 9, 23 | breqtrrd 4062 |
. . . . . . . . 9
|
| 25 | 1red 8060 |
. . . . . . . . . 10
| |
| 26 | ltdivmul 8922 |
. . . . . . . . . 10
| |
| 27 | 5, 25, 7, 10, 26 | syl112anc 1253 |
. . . . . . . . 9
|
| 28 | 24, 27 | mpbird 167 |
. . . . . . . 8
|
| 29 | 0z 9356 |
. . . . . . . . 9
| |
| 30 | flqbi2 10400 |
. . . . . . . . 9
| |
| 31 | 29, 15, 30 | sylancr 414 |
. . . . . . . 8
|
| 32 | 21, 28, 31 | mpbir2and 946 |
. . . . . . 7
|
| 33 | 19, 32 | eqtr3d 2231 |
. . . . . 6
|
| 34 | 33 | oveq2d 5941 |
. . . . 5
|
| 35 | 22 | mul01d 8438 |
. . . . 5
|
| 36 | 34, 35 | eqtrd 2229 |
. . . 4
|
| 37 | 36 | oveq2d 5941 |
. . 3
|
| 38 | 5 | recnd 8074 |
. . . 4
|
| 39 | 38 | subid1d 8345 |
. . 3
|
| 40 | 37, 39 | eqtrd 2229 |
. 2
|
| 41 | 12, 40 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulrcl 7997 ax-addcom 7998 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-i2m1 8003 ax-0lt1 8004 ax-1rid 8005 ax-0id 8006 ax-rnegex 8007 ax-precex 8008 ax-cnre 8009 ax-pre-ltirr 8010 ax-pre-ltwlin 8011 ax-pre-lttrn 8012 ax-pre-apti 8013 ax-pre-ltadd 8014 ax-pre-mulgt0 8015 ax-pre-mulext 8016 ax-arch 8017 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8082 df-mnf 8083 df-xr 8084 df-ltxr 8085 df-le 8086 df-sub 8218 df-neg 8219 df-reap 8621 df-ap 8628 df-div 8719 df-inn 9010 df-n0 9269 df-z 9346 df-q 9713 df-rp 9748 df-fl 10379 df-mod 10434 |
| This theorem is referenced by: modqid2 10462 q0mod 10466 q1mod 10467 modqabs 10468 mulqaddmodid 10475 m1modnnsub1 10481 modqltm1p1mod 10487 q2submod 10496 modifeq2int 10497 modaddmodlo 10499 modqsubdir 10504 modsumfzodifsn 10507 bitsinv1 12146 crth 12419 eulerthlemh 12426 prmdiveq 12431 modprm0 12450 4sqlem12 12598 znf1o 14285 wilthlem1 15324 lgslem1 15349 lgsdir2lem1 15377 lgsdirprm 15383 lgseisenlem1 15419 lgseisenlem2 15420 lgseisen 15423 m1lgs 15434 2lgslem1a1 15435 2lgslem4 15452 |
| Copyright terms: Public domain | W3C validator |