| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqid | Unicode version | ||
| Description: Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . 3
| |
| 2 | simplr 528 |
. . 3
| |
| 3 | 0red 8143 |
. . . 4
| |
| 4 | qre 9816 |
. . . . 5
| |
| 5 | 4 | ad2antrr 488 |
. . . 4
|
| 6 | qre 9816 |
. . . . 5
| |
| 7 | 6 | ad2antlr 489 |
. . . 4
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | 3, 5, 7, 8, 9 | lelttrd 8267 |
. . 3
|
| 11 | modqval 10541 |
. . 3
| |
| 12 | 1, 2, 10, 11 | syl3anc 1271 |
. 2
|
| 13 | 10 | gt0ne0d 8655 |
. . . . . . . . 9
|
| 14 | qdivcl 9834 |
. . . . . . . . 9
| |
| 15 | 1, 2, 13, 14 | syl3anc 1271 |
. . . . . . . 8
|
| 16 | qcn 9825 |
. . . . . . . 8
| |
| 17 | addlid 8281 |
. . . . . . . . 9
| |
| 18 | 17 | fveq2d 5630 |
. . . . . . . 8
|
| 19 | 15, 16, 18 | 3syl 17 |
. . . . . . 7
|
| 20 | divge0 9016 |
. . . . . . . . 9
| |
| 21 | 5, 8, 7, 10, 20 | syl22anc 1272 |
. . . . . . . 8
|
| 22 | 7 | recnd 8171 |
. . . . . . . . . . 11
|
| 23 | 22 | mulridd 8159 |
. . . . . . . . . 10
|
| 24 | 9, 23 | breqtrrd 4110 |
. . . . . . . . 9
|
| 25 | 1red 8157 |
. . . . . . . . . 10
| |
| 26 | ltdivmul 9019 |
. . . . . . . . . 10
| |
| 27 | 5, 25, 7, 10, 26 | syl112anc 1275 |
. . . . . . . . 9
|
| 28 | 24, 27 | mpbird 167 |
. . . . . . . 8
|
| 29 | 0z 9453 |
. . . . . . . . 9
| |
| 30 | flqbi2 10506 |
. . . . . . . . 9
| |
| 31 | 29, 15, 30 | sylancr 414 |
. . . . . . . 8
|
| 32 | 21, 28, 31 | mpbir2and 950 |
. . . . . . 7
|
| 33 | 19, 32 | eqtr3d 2264 |
. . . . . 6
|
| 34 | 33 | oveq2d 6016 |
. . . . 5
|
| 35 | 22 | mul01d 8535 |
. . . . 5
|
| 36 | 34, 35 | eqtrd 2262 |
. . . 4
|
| 37 | 36 | oveq2d 6016 |
. . 3
|
| 38 | 5 | recnd 8171 |
. . . 4
|
| 39 | 38 | subid1d 8442 |
. . 3
|
| 40 | 37, 39 | eqtrd 2262 |
. 2
|
| 41 | 12, 40 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-n0 9366 df-z 9443 df-q 9811 df-rp 9846 df-fl 10485 df-mod 10540 |
| This theorem is referenced by: modqid2 10568 q0mod 10572 q1mod 10573 modqabs 10574 mulqaddmodid 10581 m1modnnsub1 10587 modqltm1p1mod 10593 q2submod 10602 modifeq2int 10603 modaddmodlo 10605 modqsubdir 10610 modsumfzodifsn 10613 bitsinv1 12468 crth 12741 eulerthlemh 12748 prmdiveq 12753 modprm0 12772 4sqlem12 12920 znf1o 14609 wilthlem1 15648 lgslem1 15673 lgsdir2lem1 15701 lgsdirprm 15707 lgseisenlem1 15743 lgseisenlem2 15744 lgseisen 15747 m1lgs 15758 2lgslem1a1 15759 2lgslem4 15776 |
| Copyright terms: Public domain | W3C validator |