| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqid | Unicode version | ||
| Description: Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . 3
| |
| 2 | simplr 528 |
. . 3
| |
| 3 | 0red 8029 |
. . . 4
| |
| 4 | qre 9701 |
. . . . 5
| |
| 5 | 4 | ad2antrr 488 |
. . . 4
|
| 6 | qre 9701 |
. . . . 5
| |
| 7 | 6 | ad2antlr 489 |
. . . 4
|
| 8 | simprl 529 |
. . . 4
| |
| 9 | simprr 531 |
. . . 4
| |
| 10 | 3, 5, 7, 8, 9 | lelttrd 8153 |
. . 3
|
| 11 | modqval 10418 |
. . 3
| |
| 12 | 1, 2, 10, 11 | syl3anc 1249 |
. 2
|
| 13 | 10 | gt0ne0d 8541 |
. . . . . . . . 9
|
| 14 | qdivcl 9719 |
. . . . . . . . 9
| |
| 15 | 1, 2, 13, 14 | syl3anc 1249 |
. . . . . . . 8
|
| 16 | qcn 9710 |
. . . . . . . 8
| |
| 17 | addlid 8167 |
. . . . . . . . 9
| |
| 18 | 17 | fveq2d 5563 |
. . . . . . . 8
|
| 19 | 15, 16, 18 | 3syl 17 |
. . . . . . 7
|
| 20 | divge0 8902 |
. . . . . . . . 9
| |
| 21 | 5, 8, 7, 10, 20 | syl22anc 1250 |
. . . . . . . 8
|
| 22 | 7 | recnd 8057 |
. . . . . . . . . . 11
|
| 23 | 22 | mulridd 8045 |
. . . . . . . . . 10
|
| 24 | 9, 23 | breqtrrd 4062 |
. . . . . . . . 9
|
| 25 | 1red 8043 |
. . . . . . . . . 10
| |
| 26 | ltdivmul 8905 |
. . . . . . . . . 10
| |
| 27 | 5, 25, 7, 10, 26 | syl112anc 1253 |
. . . . . . . . 9
|
| 28 | 24, 27 | mpbird 167 |
. . . . . . . 8
|
| 29 | 0z 9339 |
. . . . . . . . 9
| |
| 30 | flqbi2 10383 |
. . . . . . . . 9
| |
| 31 | 29, 15, 30 | sylancr 414 |
. . . . . . . 8
|
| 32 | 21, 28, 31 | mpbir2and 946 |
. . . . . . 7
|
| 33 | 19, 32 | eqtr3d 2231 |
. . . . . 6
|
| 34 | 33 | oveq2d 5939 |
. . . . 5
|
| 35 | 22 | mul01d 8421 |
. . . . 5
|
| 36 | 34, 35 | eqtrd 2229 |
. . . 4
|
| 37 | 36 | oveq2d 5939 |
. . 3
|
| 38 | 5 | recnd 8057 |
. . . 4
|
| 39 | 38 | subid1d 8328 |
. . 3
|
| 40 | 37, 39 | eqtrd 2229 |
. 2
|
| 41 | 12, 40 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 ax-arch 8000 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6199 df-2nd 6200 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-inn 8993 df-n0 9252 df-z 9329 df-q 9696 df-rp 9731 df-fl 10362 df-mod 10417 |
| This theorem is referenced by: modqid2 10445 q0mod 10449 q1mod 10450 modqabs 10451 mulqaddmodid 10458 m1modnnsub1 10464 modqltm1p1mod 10470 q2submod 10479 modifeq2int 10480 modaddmodlo 10482 modqsubdir 10487 modsumfzodifsn 10490 bitsinv1 12129 crth 12402 eulerthlemh 12409 prmdiveq 12414 modprm0 12433 4sqlem12 12581 znf1o 14217 wilthlem1 15226 lgslem1 15251 lgsdir2lem1 15279 lgsdirprm 15285 lgseisenlem1 15321 lgseisenlem2 15322 lgseisen 15325 m1lgs 15336 2lgslem1a1 15337 2lgslem4 15354 |
| Copyright terms: Public domain | W3C validator |