ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqid Unicode version

Theorem modqid 10531
Description: Identity law for modulo. (Contributed by Jim Kingdon, 21-Oct-2021.)
Assertion
Ref Expression
modqid  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  mod  B )  =  A )

Proof of Theorem modqid
StepHypRef Expression
1 simpll 527 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  e.  QQ )
2 simplr 528 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  B  e.  QQ )
3 0red 8108 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  e.  RR )
4 qre 9781 . . . . 5  |-  ( A  e.  QQ  ->  A  e.  RR )
54ad2antrr 488 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  e.  RR )
6 qre 9781 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  RR )
76ad2antlr 489 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  B  e.  RR )
8 simprl 529 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <_  A )
9 simprr 531 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  <  B )
103, 5, 7, 8, 9lelttrd 8232 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <  B )
11 modqval 10506 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  0  <  B )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
121, 2, 10, 11syl3anc 1250 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  mod  B )  =  ( A  -  ( B  x.  ( |_ `  ( A  /  B
) ) ) ) )
1310gt0ne0d 8620 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  B  =/=  0 )
14 qdivcl 9799 . . . . . . . . 9  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
151, 2, 13, 14syl3anc 1250 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  /  B )  e.  QQ )
16 qcn 9790 . . . . . . . 8  |-  ( ( A  /  B )  e.  QQ  ->  ( A  /  B )  e.  CC )
17 addlid 8246 . . . . . . . . 9  |-  ( ( A  /  B )  e.  CC  ->  (
0  +  ( A  /  B ) )  =  ( A  /  B ) )
1817fveq2d 5603 . . . . . . . 8  |-  ( ( A  /  B )  e.  CC  ->  ( |_ `  ( 0  +  ( A  /  B
) ) )  =  ( |_ `  ( A  /  B ) ) )
1915, 16, 183syl 17 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( |_ `  ( 0  +  ( A  /  B
) ) )  =  ( |_ `  ( A  /  B ) ) )
20 divge0 8981 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
215, 8, 7, 10, 20syl22anc 1251 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <_  ( A  /  B
) )
227recnd 8136 . . . . . . . . . . 11  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  B  e.  CC )
2322mulridd 8124 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( B  x.  1 )  =  B )
249, 23breqtrrd 4087 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  <  ( B  x.  1 ) )
25 1red 8122 . . . . . . . . . 10  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  1  e.  RR )
26 ltdivmul 8984 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( A  /  B )  <  1  <->  A  <  ( B  x.  1 ) ) )
275, 25, 7, 10, 26syl112anc 1254 . . . . . . . . 9  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  (
( A  /  B
)  <  1  <->  A  <  ( B  x.  1 ) ) )
2824, 27mpbird 167 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  /  B )  <  1 )
29 0z 9418 . . . . . . . . 9  |-  0  e.  ZZ
30 flqbi2 10471 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( A  /  B
)  e.  QQ )  ->  ( ( |_
`  ( 0  +  ( A  /  B
) ) )  =  0  <->  ( 0  <_ 
( A  /  B
)  /\  ( A  /  B )  <  1
) ) )
3129, 15, 30sylancr 414 . . . . . . . 8  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  (
( |_ `  (
0  +  ( A  /  B ) ) )  =  0  <->  (
0  <_  ( A  /  B )  /\  ( A  /  B )  <  1 ) ) )
3221, 28, 31mpbir2and 947 . . . . . . 7  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( |_ `  ( 0  +  ( A  /  B
) ) )  =  0 )
3319, 32eqtr3d 2242 . . . . . 6  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( |_ `  ( A  /  B ) )  =  0 )
3433oveq2d 5983 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( B  x.  ( |_ `  ( A  /  B
) ) )  =  ( B  x.  0 ) )
3522mul01d 8500 . . . . 5  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( B  x.  0 )  =  0 )
3634, 35eqtrd 2240 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( B  x.  ( |_ `  ( A  /  B
) ) )  =  0 )
3736oveq2d 5983 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) )  =  ( A  -  0 ) )
385recnd 8136 . . . 4  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  e.  CC )
3938subid1d 8407 . . 3  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  -  0 )  =  A )
4037, 39eqtrd 2240 . 2  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  -  ( B  x.  ( |_ `  ( A  /  B ) ) ) )  =  A )
4112, 40eqtrd 2240 1  |-  ( ( ( A  e.  QQ  /\  B  e.  QQ )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  ( A  mod  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    < clt 8142    <_ cle 8143    - cmin 8278    / cdiv 8780   ZZcz 9407   QQcq 9775   |_cfl 10448    mod cmo 10504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-q 9776  df-rp 9811  df-fl 10450  df-mod 10505
This theorem is referenced by:  modqid2  10533  q0mod  10537  q1mod  10538  modqabs  10539  mulqaddmodid  10546  m1modnnsub1  10552  modqltm1p1mod  10558  q2submod  10567  modifeq2int  10568  modaddmodlo  10570  modqsubdir  10575  modsumfzodifsn  10578  bitsinv1  12388  crth  12661  eulerthlemh  12668  prmdiveq  12673  modprm0  12692  4sqlem12  12840  znf1o  14528  wilthlem1  15567  lgslem1  15592  lgsdir2lem1  15620  lgsdirprm  15626  lgseisenlem1  15662  lgseisenlem2  15663  lgseisen  15666  m1lgs  15677  2lgslem1a1  15678  2lgslem4  15695
  Copyright terms: Public domain W3C validator