ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sumrbdclem Unicode version

Theorem sumrbdclem 11387
Description: Lemma for sumrbdc 11389. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
Hypotheses
Ref Expression
isummo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
isummo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
isummo.dc  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
isumrb.3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
sumrbdclem  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  +  ,  F ) )
Distinct variable groups:    A, k    k, N    ph, k    k, M
Allowed substitution hints:    B( k)    F( k)

Proof of Theorem sumrbdclem
Dummy variables  n  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlid 8098 . . 3  |-  ( n  e.  CC  ->  (
0  +  n )  =  n )
21adantl 277 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  CC )  ->  ( 0  +  n )  =  n )
3 0cnd 7952 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  0  e.  CC )
4 isumrb.3 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
54adantr 276 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  (
ZZ>= `  M ) )
6 eluzelz 9539 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
75, 6syl 14 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  N  e.  ZZ )
8 isummo.dc . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  -> DECID  k  e.  A
)
9 exmiddc 836 . . . . . . . . 9  |-  (DECID  k  e.  A  ->  ( k  e.  A  \/  -.  k  e.  A )
)
108, 9syl 14 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( k  e.  A  \/  -.  k  e.  A )
)
11 iftrue 3541 . . . . . . . . . . . . 13  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  B )
1211adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  =  B )
13 isummo.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1412, 13eqeltrd 2254 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
1514ex 115 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
0 )  e.  CC ) )
16 iffalse 3544 . . . . . . . . . . . 12  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
17 0cn 7951 . . . . . . . . . . . 12  |-  0  e.  CC
1816, 17eqeltrdi 2268 . . . . . . . . . . 11  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
1918a1i 9 . . . . . . . . . 10  |-  ( ph  ->  ( -.  k  e.  A  ->  if (
k  e.  A ,  B ,  0 )  e.  CC ) )
2015, 19jaod 717 . . . . . . . . 9  |-  ( ph  ->  ( ( k  e.  A  \/  -.  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC ) )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
k  e.  A  \/  -.  k  e.  A
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC ) )
2210, 21mpd 13 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
2322ralrimiva 2550 . . . . . 6  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC )
24 nfv 1528 . . . . . . . . 9  |-  F/ k  N  e.  A
25 nfcsb1v 3092 . . . . . . . . 9  |-  F/_ k [_ N  /  k ]_ B
26 nfcv 2319 . . . . . . . . 9  |-  F/_ k
0
2724, 25, 26nfif 3564 . . . . . . . 8  |-  F/_ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )
2827nfel1 2330 . . . . . . 7  |-  F/ k if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC
29 eleq1 2240 . . . . . . . . 9  |-  ( k  =  N  ->  (
k  e.  A  <->  N  e.  A ) )
30 csbeq1a 3068 . . . . . . . . 9  |-  ( k  =  N  ->  B  =  [_ N  /  k ]_ B )
3129, 30ifbieq1d 3558 . . . . . . . 8  |-  ( k  =  N  ->  if ( k  e.  A ,  B ,  0 )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 ) )
3231eleq1d 2246 . . . . . . 7  |-  ( k  =  N  ->  ( if ( k  e.  A ,  B ,  0 )  e.  CC  <->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC ) )
3328, 32rspc 2837 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC ) )
344, 23, 33sylc 62 . . . . 5  |-  ( ph  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC )
3534adantr 276 . . . 4  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC )
36 nfcv 2319 . . . . 5  |-  F/_ k N
37 isummo.1 . . . . 5  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
3836, 27, 31, 37fvmptf 5610 . . . 4  |-  ( ( N  e.  ZZ  /\  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 )  e.  CC )  -> 
( F `  N
)  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 ) )
397, 35, 38syl2anc 411 . . 3  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  =  if ( N  e.  A ,  [_ N  /  k ]_ B ,  0 ) )
4039, 35eqeltrd 2254 . 2  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  ( F `  N )  e.  CC )
41 elfzelz 10027 . . . 4  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ZZ )
42 elfzuz 10023 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  n  e.  ( ZZ>= `  M )
)
4342adantl 277 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  n  e.  ( ZZ>= `  M )
)
4423ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC )
45 nfv 1528 . . . . . . . 8  |-  F/ k  n  e.  A
46 nfcsb1v 3092 . . . . . . . 8  |-  F/_ k [_ n  /  k ]_ B
4745, 46, 26nfif 3564 . . . . . . 7  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
4847nfel1 2330 . . . . . 6  |-  F/ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC
49 eleq1 2240 . . . . . . . 8  |-  ( k  =  n  ->  (
k  e.  A  <->  n  e.  A ) )
50 csbeq1a 3068 . . . . . . . 8  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
5149, 50ifbieq1d 3558 . . . . . . 7  |-  ( k  =  n  ->  if ( k  e.  A ,  B ,  0 )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
5251eleq1d 2246 . . . . . 6  |-  ( k  =  n  ->  ( if ( k  e.  A ,  B ,  0 )  e.  CC  <->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC ) )
5348, 52rspc 2837 . . . . 5  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC ) )
5443, 44, 53sylc 62 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC )
55 nfcv 2319 . . . . 5  |-  F/_ k
n
5655, 47, 51, 37fvmptf 5610 . . . 4  |-  ( ( n  e.  ZZ  /\  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC )  -> 
( F `  n
)  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
5741, 54, 56syl2an2 594 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
58 uznfz 10105 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  N
)  ->  -.  n  e.  ( M ... ( N  -  1 ) ) )
5958con2i 627 . . . . . 6  |-  ( n  e.  ( M ... ( N  -  1
) )  ->  -.  n  e.  ( ZZ>= `  N ) )
6059adantl 277 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  ( ZZ>= `  N )
)
61 ssel 3151 . . . . . 6  |-  ( A 
C_  ( ZZ>= `  N
)  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6261ad2antlr 489 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( n  e.  A  ->  n  e.  ( ZZ>= `  N )
) )
6360, 62mtod 663 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  -.  n  e.  A )
6463iffalsed 3546 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  0 )  =  0 )
6557, 64eqtrd 2210 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( M ... ( N  -  1 ) ) )  ->  ( F `  n )  =  0 )
66 eluzelz 9539 . . . 4  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
67 simpr 110 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  n  e.  ( ZZ>= `  M )
)
6823ad2antrr 488 . . . . 5  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  A. k  e.  ( ZZ>= `  M ) if ( k  e.  A ,  B ,  0 )  e.  CC )
6967, 68, 53sylc 62 . . . 4  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  if (
n  e.  A ,  [_ n  /  k ]_ B ,  0 )  e.  CC )
7066, 69, 56syl2an2 594 . . 3  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
7170, 69eqeltrd 2254 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  n  e.  ( ZZ>= `  M )
)  ->  ( F `  n )  e.  CC )
72 addcl 7938 . . 3  |-  ( ( n  e.  CC  /\  z  e.  CC )  ->  ( n  +  z )  e.  CC )
7372adantl 277 . 2  |-  ( ( ( ph  /\  A  C_  ( ZZ>= `  N )
)  /\  ( n  e.  CC  /\  z  e.  CC ) )  -> 
( n  +  z )  e.  CC )
742, 3, 5, 40, 65, 71, 73seq3id 10510 1  |-  ( (
ph  /\  A  C_  ( ZZ>=
`  N ) )  ->  (  seq M
(  +  ,  F
)  |`  ( ZZ>= `  N
) )  =  seq N (  +  ,  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   [_csb 3059    C_ wss 3131   ifcif 3536    |-> cmpt 4066    |` cres 4630   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813   1c1 7814    + caddc 7816    - cmin 8130   ZZcz 9255   ZZ>=cuz 9530   ...cfz 10010    seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-fz 10011  df-fzo 10145  df-seqfrec 10448
This theorem is referenced by:  sumrbdc  11389
  Copyright terms: Public domain W3C validator