| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > readdcan | Unicode version | ||
| Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.) | 
| Ref | Expression | 
|---|---|
| readdcan | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-rnegex 7988 | 
. . . 4
 | |
| 2 | 1 | 3ad2ant3 1022 | 
. . 3
 | 
| 3 | oveq2 5930 | 
. . . . . . 7
 | |
| 4 | 3 | adantl 277 | 
. . . . . 6
 | 
| 5 | simprl 529 | 
. . . . . . . . . 10
 | |
| 6 | 5 | recnd 8055 | 
. . . . . . . . 9
 | 
| 7 | simpl3 1004 | 
. . . . . . . . . 10
 | |
| 8 | 7 | recnd 8055 | 
. . . . . . . . 9
 | 
| 9 | simpl1 1002 | 
. . . . . . . . . 10
 | |
| 10 | 9 | recnd 8055 | 
. . . . . . . . 9
 | 
| 11 | 6, 8, 10 | addassd 8049 | 
. . . . . . . 8
 | 
| 12 | simpl2 1003 | 
. . . . . . . . . 10
 | |
| 13 | 12 | recnd 8055 | 
. . . . . . . . 9
 | 
| 14 | 6, 8, 13 | addassd 8049 | 
. . . . . . . 8
 | 
| 15 | 11, 14 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 16 | 15 | adantr 276 | 
. . . . . 6
 | 
| 17 | 4, 16 | mpbird 167 | 
. . . . 5
 | 
| 18 | 8 | adantr 276 | 
. . . . . . . . 9
 | 
| 19 | 6 | adantr 276 | 
. . . . . . . . 9
 | 
| 20 | addcom 8163 | 
. . . . . . . . 9
 | |
| 21 | 18, 19, 20 | syl2anc 411 | 
. . . . . . . 8
 | 
| 22 | simplrr 536 | 
. . . . . . . 8
 | |
| 23 | 21, 22 | eqtr3d 2231 | 
. . . . . . 7
 | 
| 24 | 23 | oveq1d 5937 | 
. . . . . 6
 | 
| 25 | 10 | adantr 276 | 
. . . . . . 7
 | 
| 26 | addlid 8165 | 
. . . . . . 7
 | |
| 27 | 25, 26 | syl 14 | 
. . . . . 6
 | 
| 28 | 24, 27 | eqtrd 2229 | 
. . . . 5
 | 
| 29 | 23 | oveq1d 5937 | 
. . . . . 6
 | 
| 30 | 13 | adantr 276 | 
. . . . . . 7
 | 
| 31 | addlid 8165 | 
. . . . . . 7
 | |
| 32 | 30, 31 | syl 14 | 
. . . . . 6
 | 
| 33 | 29, 32 | eqtrd 2229 | 
. . . . 5
 | 
| 34 | 17, 28, 33 | 3eqtr3d 2237 | 
. . . 4
 | 
| 35 | 34 | ex 115 | 
. . 3
 | 
| 36 | 2, 35 | rexlimddv 2619 | 
. 2
 | 
| 37 | oveq2 5930 | 
. 2
 | |
| 38 | 36, 37 | impbid1 142 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-resscn 7971 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |