Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > readdcan | Unicode version |
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
readdcan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 7862 | . . . 4 | |
2 | 1 | 3ad2ant3 1010 | . . 3 |
3 | oveq2 5850 | . . . . . . 7 | |
4 | 3 | adantl 275 | . . . . . 6 |
5 | simprl 521 | . . . . . . . . . 10 | |
6 | 5 | recnd 7927 | . . . . . . . . 9 |
7 | simpl3 992 | . . . . . . . . . 10 | |
8 | 7 | recnd 7927 | . . . . . . . . 9 |
9 | simpl1 990 | . . . . . . . . . 10 | |
10 | 9 | recnd 7927 | . . . . . . . . 9 |
11 | 6, 8, 10 | addassd 7921 | . . . . . . . 8 |
12 | simpl2 991 | . . . . . . . . . 10 | |
13 | 12 | recnd 7927 | . . . . . . . . 9 |
14 | 6, 8, 13 | addassd 7921 | . . . . . . . 8 |
15 | 11, 14 | eqeq12d 2180 | . . . . . . 7 |
16 | 15 | adantr 274 | . . . . . 6 |
17 | 4, 16 | mpbird 166 | . . . . 5 |
18 | 8 | adantr 274 | . . . . . . . . 9 |
19 | 6 | adantr 274 | . . . . . . . . 9 |
20 | addcom 8035 | . . . . . . . . 9 | |
21 | 18, 19, 20 | syl2anc 409 | . . . . . . . 8 |
22 | simplrr 526 | . . . . . . . 8 | |
23 | 21, 22 | eqtr3d 2200 | . . . . . . 7 |
24 | 23 | oveq1d 5857 | . . . . . 6 |
25 | 10 | adantr 274 | . . . . . . 7 |
26 | addid2 8037 | . . . . . . 7 | |
27 | 25, 26 | syl 14 | . . . . . 6 |
28 | 24, 27 | eqtrd 2198 | . . . . 5 |
29 | 23 | oveq1d 5857 | . . . . . 6 |
30 | 13 | adantr 274 | . . . . . . 7 |
31 | addid2 8037 | . . . . . . 7 | |
32 | 30, 31 | syl 14 | . . . . . 6 |
33 | 29, 32 | eqtrd 2198 | . . . . 5 |
34 | 17, 28, 33 | 3eqtr3d 2206 | . . . 4 |
35 | 34 | ex 114 | . . 3 |
36 | 2, 35 | rexlimddv 2588 | . 2 |
37 | oveq2 5850 | . 2 | |
38 | 36, 37 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wrex 2445 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |