| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > readdcan | Unicode version | ||
| Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| readdcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-rnegex 8054 |
. . . 4
| |
| 2 | 1 | 3ad2ant3 1023 |
. . 3
|
| 3 | oveq2 5965 |
. . . . . . 7
| |
| 4 | 3 | adantl 277 |
. . . . . 6
|
| 5 | simprl 529 |
. . . . . . . . . 10
| |
| 6 | 5 | recnd 8121 |
. . . . . . . . 9
|
| 7 | simpl3 1005 |
. . . . . . . . . 10
| |
| 8 | 7 | recnd 8121 |
. . . . . . . . 9
|
| 9 | simpl1 1003 |
. . . . . . . . . 10
| |
| 10 | 9 | recnd 8121 |
. . . . . . . . 9
|
| 11 | 6, 8, 10 | addassd 8115 |
. . . . . . . 8
|
| 12 | simpl2 1004 |
. . . . . . . . . 10
| |
| 13 | 12 | recnd 8121 |
. . . . . . . . 9
|
| 14 | 6, 8, 13 | addassd 8115 |
. . . . . . . 8
|
| 15 | 11, 14 | eqeq12d 2221 |
. . . . . . 7
|
| 16 | 15 | adantr 276 |
. . . . . 6
|
| 17 | 4, 16 | mpbird 167 |
. . . . 5
|
| 18 | 8 | adantr 276 |
. . . . . . . . 9
|
| 19 | 6 | adantr 276 |
. . . . . . . . 9
|
| 20 | addcom 8229 |
. . . . . . . . 9
| |
| 21 | 18, 19, 20 | syl2anc 411 |
. . . . . . . 8
|
| 22 | simplrr 536 |
. . . . . . . 8
| |
| 23 | 21, 22 | eqtr3d 2241 |
. . . . . . 7
|
| 24 | 23 | oveq1d 5972 |
. . . . . 6
|
| 25 | 10 | adantr 276 |
. . . . . . 7
|
| 26 | addlid 8231 |
. . . . . . 7
| |
| 27 | 25, 26 | syl 14 |
. . . . . 6
|
| 28 | 24, 27 | eqtrd 2239 |
. . . . 5
|
| 29 | 23 | oveq1d 5972 |
. . . . . 6
|
| 30 | 13 | adantr 276 |
. . . . . . 7
|
| 31 | addlid 8231 |
. . . . . . 7
| |
| 32 | 30, 31 | syl 14 |
. . . . . 6
|
| 33 | 29, 32 | eqtrd 2239 |
. . . . 5
|
| 34 | 17, 28, 33 | 3eqtr3d 2247 |
. . . 4
|
| 35 | 34 | ex 115 |
. . 3
|
| 36 | 2, 35 | rexlimddv 2629 |
. 2
|
| 37 | oveq2 5965 |
. 2
| |
| 38 | 36, 37 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-resscn 8037 ax-1cn 8038 ax-icn 8040 ax-addcl 8041 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |