ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  readdcan Unicode version

Theorem readdcan 8009
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
readdcan  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  <->  A  =  B ) )

Proof of Theorem readdcan
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 7835 . . . 4  |-  ( C  e.  RR  ->  E. x  e.  RR  ( C  +  x )  =  0 )
213ad2ant3 1005 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( C  +  x )  =  0 )
3 oveq2 5829 . . . . . . 7  |-  ( ( C  +  A )  =  ( C  +  B )  ->  (
x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B
) ) )
43adantl 275 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B
) ) )
5 simprl 521 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  RR )
65recnd 7900 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
7 simpl3 987 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  RR )
87recnd 7900 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
9 simpl1 985 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  RR )
109recnd 7900 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
116, 8, 10addassd 7894 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  ( x  +  ( C  +  A ) ) )
12 simpl2 986 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  RR )
1312recnd 7900 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
146, 8, 13addassd 7894 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  ( x  +  ( C  +  B ) ) )
1511, 14eqeq12d 2172 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( x  +  C
)  +  A )  =  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B ) ) ) )
1615adantr 274 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( ( x  +  C )  +  A
)  =  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B ) ) ) )
174, 16mpbird 166 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  ( ( x  +  C )  +  B ) )
188adantr 274 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  C  e.  CC )
196adantr 274 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  x  e.  CC )
20 addcom 8006 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  x  e.  CC )  ->  ( C  +  x
)  =  ( x  +  C ) )
2118, 19, 20syl2anc 409 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  ( C  +  x )  =  ( x  +  C ) )
22 simplrr 526 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  ( C  +  x )  =  0 )
2321, 22eqtr3d 2192 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
x  +  C )  =  0 )
2423oveq1d 5836 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  ( 0  +  A ) )
2510adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  A  e.  CC )
26 addid2 8008 . . . . . . 7  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
2725, 26syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
0  +  A )  =  A )
2824, 27eqtrd 2190 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  A )
2923oveq1d 5836 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  B )  =  ( 0  +  B ) )
3013adantr 274 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  B  e.  CC )
31 addid2 8008 . . . . . . 7  |-  ( B  e.  CC  ->  (
0  +  B )  =  B )
3230, 31syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
0  +  B )  =  B )
3329, 32eqtrd 2190 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  B )  =  B )
3417, 28, 333eqtr3d 2198 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  A  =  B )
3534ex 114 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  =  ( C  +  B )  ->  A  =  B ) )
362, 35rexlimddv 2579 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  ->  A  =  B )
)
37 oveq2 5829 . 2  |-  ( A  =  B  ->  ( C  +  A )  =  ( C  +  B ) )
3836, 37impbid1 141 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   E.wrex 2436  (class class class)co 5821   CCcc 7724   RRcr 7725   0cc0 7726    + caddc 7729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-resscn 7818  ax-1cn 7819  ax-icn 7821  ax-addcl 7822  ax-mulcl 7824  ax-addcom 7826  ax-addass 7828  ax-i2m1 7831  ax-0id 7834  ax-rnegex 7835
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-iota 5134  df-fv 5177  df-ov 5824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator