Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > readdcan | Unicode version |
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
readdcan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-rnegex 7883 | . . . 4 | |
2 | 1 | 3ad2ant3 1015 | . . 3 |
3 | oveq2 5861 | . . . . . . 7 | |
4 | 3 | adantl 275 | . . . . . 6 |
5 | simprl 526 | . . . . . . . . . 10 | |
6 | 5 | recnd 7948 | . . . . . . . . 9 |
7 | simpl3 997 | . . . . . . . . . 10 | |
8 | 7 | recnd 7948 | . . . . . . . . 9 |
9 | simpl1 995 | . . . . . . . . . 10 | |
10 | 9 | recnd 7948 | . . . . . . . . 9 |
11 | 6, 8, 10 | addassd 7942 | . . . . . . . 8 |
12 | simpl2 996 | . . . . . . . . . 10 | |
13 | 12 | recnd 7948 | . . . . . . . . 9 |
14 | 6, 8, 13 | addassd 7942 | . . . . . . . 8 |
15 | 11, 14 | eqeq12d 2185 | . . . . . . 7 |
16 | 15 | adantr 274 | . . . . . 6 |
17 | 4, 16 | mpbird 166 | . . . . 5 |
18 | 8 | adantr 274 | . . . . . . . . 9 |
19 | 6 | adantr 274 | . . . . . . . . 9 |
20 | addcom 8056 | . . . . . . . . 9 | |
21 | 18, 19, 20 | syl2anc 409 | . . . . . . . 8 |
22 | simplrr 531 | . . . . . . . 8 | |
23 | 21, 22 | eqtr3d 2205 | . . . . . . 7 |
24 | 23 | oveq1d 5868 | . . . . . 6 |
25 | 10 | adantr 274 | . . . . . . 7 |
26 | addid2 8058 | . . . . . . 7 | |
27 | 25, 26 | syl 14 | . . . . . 6 |
28 | 24, 27 | eqtrd 2203 | . . . . 5 |
29 | 23 | oveq1d 5868 | . . . . . 6 |
30 | 13 | adantr 274 | . . . . . . 7 |
31 | addid2 8058 | . . . . . . 7 | |
32 | 30, 31 | syl 14 | . . . . . 6 |
33 | 29, 32 | eqtrd 2203 | . . . . 5 |
34 | 17, 28, 33 | 3eqtr3d 2211 | . . . 4 |
35 | 34 | ex 114 | . . 3 |
36 | 2, 35 | rexlimddv 2592 | . 2 |
37 | oveq2 5861 | . 2 | |
38 | 36, 37 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wrex 2449 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |