ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  readdcan Unicode version

Theorem readdcan 8282
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
readdcan  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  <->  A  =  B ) )

Proof of Theorem readdcan
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 8104 . . . 4  |-  ( C  e.  RR  ->  E. x  e.  RR  ( C  +  x )  =  0 )
213ad2ant3 1044 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  E. x  e.  RR  ( C  +  x )  =  0 )
3 oveq2 6008 . . . . . . 7  |-  ( ( C  +  A )  =  ( C  +  B )  ->  (
x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B
) ) )
43adantl 277 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B
) ) )
5 simprl 529 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  RR )
65recnd 8171 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  x  e.  CC )
7 simpl3 1026 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  RR )
87recnd 8171 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  C  e.  CC )
9 simpl1 1024 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  RR )
109recnd 8171 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  A  e.  CC )
116, 8, 10addassd 8165 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  A )  =  ( x  +  ( C  +  A ) ) )
12 simpl2 1025 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  RR )
1312recnd 8171 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  B  e.  CC )
146, 8, 13addassd 8165 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
x  +  C )  +  B )  =  ( x  +  ( C  +  B ) ) )
1511, 14eqeq12d 2244 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( (
( x  +  C
)  +  A )  =  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B ) ) ) )
1615adantr 276 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( ( x  +  C )  +  A
)  =  ( ( x  +  C )  +  B )  <->  ( x  +  ( C  +  A ) )  =  ( x  +  ( C  +  B ) ) ) )
174, 16mpbird 167 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  ( ( x  +  C )  +  B ) )
188adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  C  e.  CC )
196adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  x  e.  CC )
20 addcom 8279 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  x  e.  CC )  ->  ( C  +  x
)  =  ( x  +  C ) )
2118, 19, 20syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  ( C  +  x )  =  ( x  +  C ) )
22 simplrr 536 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  ( C  +  x )  =  0 )
2321, 22eqtr3d 2264 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
x  +  C )  =  0 )
2423oveq1d 6015 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  ( 0  +  A ) )
2510adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  A  e.  CC )
26 addlid 8281 . . . . . . 7  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
2725, 26syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
0  +  A )  =  A )
2824, 27eqtrd 2262 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  A )  =  A )
2923oveq1d 6015 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  B )  =  ( 0  +  B ) )
3013adantr 276 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  B  e.  CC )
31 addlid 8281 . . . . . . 7  |-  ( B  e.  CC  ->  (
0  +  B )  =  B )
3230, 31syl 14 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
0  +  B )  =  B )
3329, 32eqtrd 2262 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  (
( x  +  C
)  +  B )  =  B )
3417, 28, 333eqtr3d 2270 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  (
x  e.  RR  /\  ( C  +  x
)  =  0 ) )  /\  ( C  +  A )  =  ( C  +  B
) )  ->  A  =  B )
3534ex 115 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  ( x  e.  RR  /\  ( C  +  x
)  =  0 ) )  ->  ( ( C  +  A )  =  ( C  +  B )  ->  A  =  B ) )
362, 35rexlimddv 2653 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  ->  A  =  B )
)
37 oveq2 6008 . 2  |-  ( A  =  B  ->  ( C  +  A )  =  ( C  +  B ) )
3836, 37impbid1 142 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( C  +  A
)  =  ( C  +  B )  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509  (class class class)co 6000   CCcc 7993   RRcr 7994   0cc0 7995    + caddc 7998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8087  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0id 8103  ax-rnegex 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-iota 5277  df-fv 5325  df-ov 6003
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator