ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ptolemy Unicode version

Theorem ptolemy 14284
Description: Ptolemy's Theorem. This theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). This particular version is expressed using the sine function. It is proved by expanding all the multiplication of sines to a product of cosines of differences using sinmul 11754, then using algebraic simplification to show that both sides are equal. This formalization is based on the proof in "Trigonometry" by Gelfand and Saul. This is Metamath 100 proof #95. (Contributed by David A. Wheeler, 31-May-2015.)
Assertion
Ref Expression
ptolemy  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( sin `  A )  x.  ( sin `  B ) )  +  ( ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( sin `  ( B  +  C ) )  x.  ( sin `  ( A  +  C )
) ) )

Proof of Theorem ptolemy
StepHypRef Expression
1 addcl 7938 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  +  D
)  e.  CC )
213ad2ant2 1019 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( C  +  D
)  e.  CC )
32coscld 11721 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( C  +  D )
)  e.  CC )
43negnegd 8261 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  ->  -u -u ( cos `  ( C  +  D )
)  =  ( cos `  ( C  +  D
) ) )
5 addlid 8098 . . . . . . . . . . . . . . 15  |-  ( ( C  +  D )  e.  CC  ->  (
0  +  ( C  +  D ) )  =  ( C  +  D ) )
65oveq1d 5892 . . . . . . . . . . . . . 14  |-  ( ( C  +  D )  e.  CC  ->  (
( 0  +  ( C  +  D ) )  -  ( ( A  +  B )  +  ( C  +  D ) ) )  =  ( ( C  +  D )  -  ( ( A  +  B )  +  ( C  +  D ) ) ) )
72, 6syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( 0  +  ( C  +  D
) )  -  (
( A  +  B
)  +  ( C  +  D ) ) )  =  ( ( C  +  D )  -  ( ( A  +  B )  +  ( C  +  D
) ) ) )
8 0cnd 7952 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
0  e.  CC )
9 addcl 7938 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
109adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  B
)  e.  CC )
11103adant3 1017 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( A  +  B
)  e.  CC )
128, 11, 2pnpcan2d 8308 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( 0  +  ( C  +  D
) )  -  (
( A  +  B
)  +  ( C  +  D ) ) )  =  ( 0  -  ( A  +  B ) ) )
13 simp3 999 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( C  +  D ) )  =  pi )
1413oveq2d 5893 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( C  +  D )  -  (
( A  +  B
)  +  ( C  +  D ) ) )  =  ( ( C  +  D )  -  pi ) )
157, 12, 143eqtr3rd 2219 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( C  +  D )  -  pi )  =  ( 0  -  ( A  +  B ) ) )
16 df-neg 8133 . . . . . . . . . . . 12  |-  -u ( A  +  B )  =  ( 0  -  ( A  +  B
) )
1715, 16eqtr4di 2228 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( C  +  D )  -  pi )  =  -u ( A  +  B ) )
1817fveq2d 5521 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  +  D
)  -  pi ) )  =  ( cos `  -u ( A  +  B ) ) )
19 cosmpi 14276 . . . . . . . . . . 11  |-  ( ( C  +  D )  e.  CC  ->  ( cos `  ( ( C  +  D )  -  pi ) )  =  -u ( cos `  ( C  +  D ) ) )
202, 19syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  +  D
)  -  pi ) )  =  -u ( cos `  ( C  +  D ) ) )
21 cosneg 11737 . . . . . . . . . . 11  |-  ( ( A  +  B )  e.  CC  ->  ( cos `  -u ( A  +  B ) )  =  ( cos `  ( A  +  B )
) )
2211, 21syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  -u ( A  +  B )
)  =  ( cos `  ( A  +  B
) ) )
2318, 20, 223eqtr3d 2218 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  ->  -u ( cos `  ( C  +  D )
)  =  ( cos `  ( A  +  B
) ) )
2423negeqd 8154 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  ->  -u -u ( cos `  ( C  +  D )
)  =  -u ( cos `  ( A  +  B ) ) )
254, 24eqtr3d 2212 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( C  +  D )
)  =  -u ( cos `  ( A  +  B ) ) )
2625oveq2d 5893 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  =  ( ( cos `  ( C  -  D )
)  -  -u ( cos `  ( A  +  B ) ) ) )
27 subcl 8158 . . . . . . . . . 10  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  -  D
)  e.  CC )
2827adantl 277 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  -  D
)  e.  CC )
2928coscld 11721 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  ( C  -  D )
)  e.  CC )
30293adant3 1017 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( C  -  D )
)  e.  CC )
3111coscld 11721 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( A  +  B )
)  e.  CC )
3230, 31subnegd 8277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  -  -u ( cos `  ( A  +  B ) ) )  =  ( ( cos `  ( C  -  D
) )  +  ( cos `  ( A  +  B ) ) ) )
3326, 32eqtrd 2210 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  =  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )
3433oveq1d 5892 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( C  -  D
) )  -  ( cos `  ( C  +  D ) ) )  /  2 )  =  ( ( ( cos `  ( C  -  D
) )  +  ( cos `  ( A  +  B ) ) )  /  2 ) )
3534oveq2d 5893 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  / 
2 ) )  =  ( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) ) )
36 subcl 8158 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  e.  CC )
37363ad2ant1 1018 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( A  -  B
)  e.  CC )
3837coscld 11721 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( A  -  B )
)  e.  CC )
3938, 31subcld 8270 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  e.  CC )
4030, 31addcld 7979 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  e.  CC )
41 2cn 8992 . . . . . . 7  |-  2  e.  CC
42 2ap0 9014 . . . . . . 7  |-  2 #  0
4341, 42pm3.2i 272 . . . . . 6  |-  ( 2  e.  CC  /\  2 #  0 )
4443a1i 9 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( 2  e.  CC  /\  2 #  0 ) )
45 divdirap 8656 . . . . 5  |-  ( ( ( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  e.  CC  /\  ( ( cos `  ( C  -  D ) )  +  ( cos `  ( A  +  B )
) )  e.  CC  /\  ( 2  e.  CC  /\  2 #  0 ) )  ->  ( ( ( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  +  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )  /  2 )  =  ( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) ) )
4639, 40, 44, 45syl3anc 1238 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  +  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )  /  2 )  =  ( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) ) )
4738, 31, 30nppcan3d 8297 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( A  -  B
) )  -  ( cos `  ( A  +  B ) ) )  +  ( ( cos `  ( C  -  D
) )  +  ( cos `  ( A  +  B ) ) ) )  =  ( ( cos `  ( A  -  B )
)  +  ( cos `  ( C  -  D
) ) ) )
4847oveq1d 5892 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  +  ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) ) )  /  2 )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
4946, 48eqtr3d 2212 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  +  ( cos `  ( A  +  B
) ) )  / 
2 ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
5035, 49eqtrd 2210 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( ( cos `  ( A  -  B ) )  -  ( cos `  ( A  +  B )
) )  /  2
)  +  ( ( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  / 
2 ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
51 sinmul 11754 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sin `  A
)  x.  ( sin `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  -  ( cos `  ( A  +  B ) ) )  /  2 ) )
52513ad2ant1 1018 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  A
)  x.  ( sin `  B ) )  =  ( ( ( cos `  ( A  -  B
) )  -  ( cos `  ( A  +  B ) ) )  /  2 ) )
53 sinmul 11754 . . . 4  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( ( sin `  C
)  x.  ( sin `  D ) )  =  ( ( ( cos `  ( C  -  D
) )  -  ( cos `  ( C  +  D ) ) )  /  2 ) )
54533ad2ant2 1019 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  C
)  x.  ( sin `  D ) )  =  ( ( ( cos `  ( C  -  D
) )  -  ( cos `  ( C  +  D ) ) )  /  2 ) )
5552, 54oveq12d 5895 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( sin `  A )  x.  ( sin `  B ) )  +  ( ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( ( ( cos `  ( A  -  B )
)  -  ( cos `  ( A  +  B
) ) )  / 
2 )  +  ( ( ( cos `  ( C  -  D )
)  -  ( cos `  ( C  +  D
) ) )  / 
2 ) ) )
56 simplr 528 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  B  e.  CC )
57 simpll 527 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  A  e.  CC )
58 simprl 529 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  ->  C  e.  CC )
5956, 57, 58pnpcan2d 8308 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( B  +  C )  -  ( A  +  C )
)  =  ( B  -  A ) )
6059fveq2d 5521 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  =  ( cos `  ( B  -  A
) ) )
61603adant3 1017 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  =  ( cos `  ( B  -  A
) ) )
621adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( C  +  D
)  e.  CC )
6310, 62, 283jca 1177 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  B )  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  -  D
)  e.  CC ) )
64633adant3 1017 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  -  D
)  e.  CC ) )
65 addass 7943 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  e.  CC  /\  ( C  +  D
)  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( ( ( A  +  B )  +  ( C  +  D ) )  +  ( C  -  D
) )  =  ( ( A  +  B
)  +  ( ( C  +  D )  +  ( C  -  D ) ) ) )
6664, 65syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( A  +  B )  +  ( C  +  D
) )  +  ( C  -  D ) )  =  ( ( A  +  B )  +  ( ( C  +  D )  +  ( C  -  D
) ) ) )
67 oveq1 5884 . . . . . . . . . . 11  |-  ( ( ( A  +  B
)  +  ( C  +  D ) )  =  pi  ->  (
( ( A  +  B )  +  ( C  +  D ) )  +  ( C  -  D ) )  =  ( pi  +  ( C  -  D
) ) )
68673ad2ant3 1020 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( A  +  B )  +  ( C  +  D
) )  +  ( C  -  D ) )  =  ( pi  +  ( C  -  D ) ) )
69 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  C  e.  CC )
70 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  D  e.  CC )
7169, 70, 693jca 1177 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )
)
72713ad2ant2 1019 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )
)
73 ppncan 8201 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )  ->  (
( C  +  D
)  +  ( C  -  D ) )  =  ( C  +  C ) )
7473oveq2d 5893 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  D  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  +  ( ( C  +  D )  +  ( C  -  D ) ) )  =  ( ( A  +  B )  +  ( C  +  C
) ) )
7572, 74syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( ( C  +  D
)  +  ( C  -  D ) ) )  =  ( ( A  +  B )  +  ( C  +  C ) ) )
76 simp1 997 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( A  e.  CC  /\  B  e.  CC ) )
7769, 69jca 306 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  e.  CC  /\  C  e.  CC ) )
78773ad2ant2 1019 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( C  e.  CC  /\  C  e.  CC ) )
79 add4 8120 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  C  e.  CC ) )  -> 
( ( A  +  B )  +  ( C  +  C ) )  =  ( ( A  +  C )  +  ( B  +  C ) ) )
8076, 78, 79syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( C  +  C ) )  =  ( ( A  +  C )  +  ( B  +  C ) ) )
81 addcl 7938 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  +  C
)  e.  CC )
8281ad2ant2r 509 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( A  +  C
)  e.  CC )
83 addcl 7938 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  +  C
)  e.  CC )
8483ad2ant2lr 510 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  +  C
)  e.  CC )
8582, 84jca 306 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( A  +  C )  e.  CC  /\  ( B  +  C
)  e.  CC ) )
86853adant3 1017 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  C )  e.  CC  /\  ( B  +  C
)  e.  CC ) )
87 addcom 8096 . . . . . . . . . . . 12  |-  ( ( ( A  +  C
)  e.  CC  /\  ( B  +  C
)  e.  CC )  ->  ( ( A  +  C )  +  ( B  +  C
) )  =  ( ( B  +  C
)  +  ( A  +  C ) ) )
8886, 87syl 14 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  C )  +  ( B  +  C ) )  =  ( ( B  +  C )  +  ( A  +  C ) ) )
8975, 80, 883eqtrd 2214 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( A  +  B )  +  ( ( C  +  D
)  +  ( C  -  D ) ) )  =  ( ( B  +  C )  +  ( A  +  C ) ) )
9066, 68, 893eqtr3rd 2219 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( B  +  C )  +  ( A  +  C ) )  =  ( pi  +  ( C  -  D ) ) )
91 picn 14247 . . . . . . . . . . 11  |-  pi  e.  CC
92 addcom 8096 . . . . . . . . . . 11  |-  ( ( pi  e.  CC  /\  ( C  -  D
)  e.  CC )  ->  ( pi  +  ( C  -  D
) )  =  ( ( C  -  D
)  +  pi ) )
9391, 28, 92sylancr 414 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( pi  +  ( C  -  D ) )  =  ( ( C  -  D )  +  pi ) )
94933adant3 1017 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( pi  +  ( C  -  D ) )  =  ( ( C  -  D )  +  pi ) )
9590, 94eqtrd 2210 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( B  +  C )  +  ( A  +  C ) )  =  ( ( C  -  D )  +  pi ) )
9695fveq2d 5521 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( B  +  C
)  +  ( A  +  C ) ) )  =  ( cos `  ( ( C  -  D )  +  pi ) ) )
97 cosppi 14278 . . . . . . . . 9  |-  ( ( C  -  D )  e.  CC  ->  ( cos `  ( ( C  -  D )  +  pi ) )  = 
-u ( cos `  ( C  -  D )
) )
9828, 97syl 14 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  (
( C  -  D
)  +  pi ) )  =  -u ( cos `  ( C  -  D ) ) )
99983adant3 1017 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( C  -  D
)  +  pi ) )  =  -u ( cos `  ( C  -  D ) ) )
10096, 99eqtrd 2210 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  (
( B  +  C
)  +  ( A  +  C ) ) )  =  -u ( cos `  ( C  -  D ) ) )
10161, 100oveq12d 5895 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C ) ) ) )  =  ( ( cos `  ( B  -  A )
)  -  -u ( cos `  ( C  -  D ) ) ) )
102 subcl 8158 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  -  A
)  e.  CC )
103102ancoms 268 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  A
)  e.  CC )
104103adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( B  -  A
)  e.  CC )
105104coscld 11721 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( cos `  ( B  -  A )
)  e.  CC )
106105, 29subnegd 8277 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( cos `  ( B  -  A )
)  -  -u ( cos `  ( C  -  D ) ) )  =  ( ( cos `  ( B  -  A
) )  +  ( cos `  ( C  -  D ) ) ) )
1071063adant3 1017 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( B  -  A )
)  -  -u ( cos `  ( C  -  D ) ) )  =  ( ( cos `  ( B  -  A
) )  +  ( cos `  ( C  -  D ) ) ) )
108101, 107eqtrd 2210 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  (
( B  +  C
)  -  ( A  +  C ) ) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C ) ) ) )  =  ( ( cos `  ( B  -  A )
)  +  ( cos `  ( C  -  D
) ) ) )
109108oveq1d 5892 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( ( B  +  C )  -  ( A  +  C )
) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C
) ) ) )  /  2 )  =  ( ( ( cos `  ( B  -  A
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
110 sinmul 11754 . . . . 5  |-  ( ( ( B  +  C
)  e.  CC  /\  ( A  +  C
)  e.  CC )  ->  ( ( sin `  ( B  +  C
) )  x.  ( sin `  ( A  +  C ) ) )  =  ( ( ( cos `  ( ( B  +  C )  -  ( A  +  C ) ) )  -  ( cos `  (
( B  +  C
)  +  ( A  +  C ) ) ) )  /  2
) )
11184, 82, 110syl2anc 411 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC ) )  -> 
( ( sin `  ( B  +  C )
)  x.  ( sin `  ( A  +  C
) ) )  =  ( ( ( cos `  ( ( B  +  C )  -  ( A  +  C )
) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C
) ) ) )  /  2 ) )
1121113adant3 1017 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  ( B  +  C )
)  x.  ( sin `  ( A  +  C
) ) )  =  ( ( ( cos `  ( ( B  +  C )  -  ( A  +  C )
) )  -  ( cos `  ( ( B  +  C )  +  ( A  +  C
) ) ) )  /  2 ) )
113 cosneg 11737 . . . . . . . 8  |-  ( ( A  -  B )  e.  CC  ->  ( cos `  -u ( A  -  B ) )  =  ( cos `  ( A  -  B )
) )
11436, 113syl 14 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  -u ( A  -  B )
)  =  ( cos `  ( A  -  B
) ) )
115 negsubdi2 8218 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  -> 
-u ( A  -  B )  =  ( B  -  A ) )
116115fveq2d 5521 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  -u ( A  -  B )
)  =  ( cos `  ( B  -  A
) ) )
117114, 116eqtr3d 2212 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( cos `  ( A  -  B )
)  =  ( cos `  ( B  -  A
) ) )
1181173ad2ant1 1018 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( cos `  ( A  -  B )
)  =  ( cos `  ( B  -  A
) ) )
119118oveq1d 5892 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( cos `  ( A  -  B )
)  +  ( cos `  ( C  -  D
) ) )  =  ( ( cos `  ( B  -  A )
)  +  ( cos `  ( C  -  D
) ) ) )
120119oveq1d 5892 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 )  =  ( ( ( cos `  ( B  -  A ) )  +  ( cos `  ( C  -  D )
) )  /  2
) )
121109, 112, 1203eqtr4d 2220 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( sin `  ( B  +  C )
)  x.  ( sin `  ( A  +  C
) ) )  =  ( ( ( cos `  ( A  -  B
) )  +  ( cos `  ( C  -  D ) ) )  /  2 ) )
12250, 55, 1213eqtr4d 2220 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( C  e.  CC  /\  D  e.  CC )  /\  (
( A  +  B
)  +  ( C  +  D ) )  =  pi )  -> 
( ( ( sin `  A )  x.  ( sin `  B ) )  +  ( ( sin `  C )  x.  ( sin `  D ) ) )  =  ( ( sin `  ( B  +  C ) )  x.  ( sin `  ( A  +  C )
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4005   ` cfv 5218  (class class class)co 5877   CCcc 7811   0cc0 7813    + caddc 7816    x. cmul 7818    - cmin 8130   -ucneg 8131   # cap 8540    / cdiv 8631   2c2 8972   sincsin 11654   cosccos 11655   picpi 11657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933  ax-pre-suploc 7934  ax-addf 7935  ax-mulf 7936
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-disj 3983  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-of 6085  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-map 6652  df-pm 6653  df-en 6743  df-dom 6744  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-5 8983  df-6 8984  df-7 8985  df-8 8986  df-9 8987  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-xneg 9774  df-xadd 9775  df-ioo 9894  df-ioc 9895  df-ico 9896  df-icc 9897  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-fac 10708  df-bc 10730  df-ihash 10758  df-shft 10826  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364  df-ef 11658  df-sin 11660  df-cos 11661  df-pi 11663  df-rest 12695  df-topgen 12714  df-psmet 13486  df-xmet 13487  df-met 13488  df-bl 13489  df-mopn 13490  df-top 13537  df-topon 13550  df-bases 13582  df-ntr 13635  df-cn 13727  df-cnp 13728  df-tx 13792  df-cncf 14097  df-limced 14164  df-dvap 14165
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator