ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnegexlem1 Unicode version

Theorem cnegexlem1 8282
Description: Addition cancellation of a real number from two complex numbers. Lemma for cnegex 8285. (Contributed by Eric Schmidt, 22-May-2007.)
Assertion
Ref Expression
cnegexlem1  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )

Proof of Theorem cnegexlem1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ax-rnegex 8069 . . . 4  |-  ( A  e.  RR  ->  E. x  e.  RR  ( A  +  x )  =  0 )
213ad2ant1 1021 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  RR  ( A  +  x )  =  0 )
3 recn 8093 . . . 4  |-  ( A  e.  RR  ->  A  e.  CC )
4 recn 8093 . . . . . . 7  |-  ( x  e.  RR  ->  x  e.  CC )
5 oveq2 5975 . . . . . . . . . . 11  |-  ( ( A  +  B )  =  ( A  +  C )  ->  (
x  +  ( A  +  B ) )  =  ( x  +  ( A  +  C
) ) )
6 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  x  e.  CC )
7 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  A  e.  CC )
8 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  B  e.  CC )
96, 7, 8addassd 8130 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  (
( x  +  A
)  +  B )  =  ( x  +  ( A  +  B
) ) )
10 simplrr 536 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  C  e.  CC )
116, 7, 10addassd 8130 . . . . . . . . . . . 12  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  (
( x  +  A
)  +  C )  =  ( x  +  ( A  +  C
) ) )
129, 11eqeq12d 2222 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  (
( ( x  +  A )  +  B
)  =  ( ( x  +  A )  +  C )  <->  ( x  +  ( A  +  B ) )  =  ( x  +  ( A  +  C ) ) ) )
135, 12imbitrrid 156 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  -> 
( ( x  +  A )  +  B
)  =  ( ( x  +  A )  +  C ) ) )
1413adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  /\  ( A  +  x
)  =  0 )  ->  ( ( A  +  B )  =  ( A  +  C
)  ->  ( (
x  +  A )  +  B )  =  ( ( x  +  A )  +  C
) ) )
15 addcom 8244 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  +  x
)  =  ( x  +  A ) )
1615eqeq1d 2216 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( A  +  x )  =  0  <-> 
( x  +  A
)  =  0 ) )
1716adantlr 477 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  0  <->  (
x  +  A )  =  0 ) )
18 oveq1 5974 . . . . . . . . . . . . . . 15  |-  ( ( x  +  A )  =  0  ->  (
( x  +  A
)  +  B )  =  ( 0  +  B ) )
19 oveq1 5974 . . . . . . . . . . . . . . 15  |-  ( ( x  +  A )  =  0  ->  (
( x  +  A
)  +  C )  =  ( 0  +  C ) )
2018, 19eqeq12d 2222 . . . . . . . . . . . . . 14  |-  ( ( x  +  A )  =  0  ->  (
( ( x  +  A )  +  B
)  =  ( ( x  +  A )  +  C )  <->  ( 0  +  B )  =  ( 0  +  C
) ) )
2120adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  /\  ( x  +  A
)  =  0 )  ->  ( ( ( x  +  A )  +  B )  =  ( ( x  +  A )  +  C
)  <->  ( 0  +  B )  =  ( 0  +  C ) ) )
22 addlid 8246 . . . . . . . . . . . . . . . 16  |-  ( B  e.  CC  ->  (
0  +  B )  =  B )
23 addlid 8246 . . . . . . . . . . . . . . . 16  |-  ( C  e.  CC  ->  (
0  +  C )  =  C )
2422, 23eqeqan12d 2223 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( ( 0  +  B )  =  ( 0  +  C )  <-> 
B  =  C ) )
2524adantl 277 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( (
0  +  B )  =  ( 0  +  C )  <->  B  =  C ) )
2625ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  /\  ( x  +  A
)  =  0 )  ->  ( ( 0  +  B )  =  ( 0  +  C
)  <->  B  =  C
) )
2721, 26bitrd 188 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  /\  ( x  +  A
)  =  0 )  ->  ( ( ( x  +  A )  +  B )  =  ( ( x  +  A )  +  C
)  <->  B  =  C
) )
2827ex 115 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  (
( x  +  A
)  =  0  -> 
( ( ( x  +  A )  +  B )  =  ( ( x  +  A
)  +  C )  <-> 
B  =  C ) ) )
2917, 28sylbid 150 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  0  -> 
( ( ( x  +  A )  +  B )  =  ( ( x  +  A
)  +  C )  <-> 
B  =  C ) ) )
3029imp 124 . . . . . . . . 9  |-  ( ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  /\  ( A  +  x
)  =  0 )  ->  ( ( ( x  +  A )  +  B )  =  ( ( x  +  A )  +  C
)  <->  B  =  C
) )
3114, 30sylibd 149 . . . . . . . 8  |-  ( ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  /\  ( A  +  x
)  =  0 )  ->  ( ( A  +  B )  =  ( A  +  C
)  ->  B  =  C ) )
3231ex 115 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  CC )  ->  (
( A  +  x
)  =  0  -> 
( ( A  +  B )  =  ( A  +  C )  ->  B  =  C ) ) )
334, 32sylan2 286 . . . . . 6  |-  ( ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  /\  x  e.  RR )  ->  (
( A  +  x
)  =  0  -> 
( ( A  +  B )  =  ( A  +  C )  ->  B  =  C ) ) )
3433rexlimdva 2625 . . . . 5  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( E. x  e.  RR  ( A  +  x )  =  0  ->  (
( A  +  B
)  =  ( A  +  C )  ->  B  =  C )
) )
35343impb 1202 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. x  e.  RR  ( A  +  x
)  =  0  -> 
( ( A  +  B )  =  ( A  +  C )  ->  B  =  C ) ) )
363, 35syl3an1 1283 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. x  e.  RR  ( A  +  x
)  =  0  -> 
( ( A  +  B )  =  ( A  +  C )  ->  B  =  C ) ) )
372, 36mpd 13 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  ->  B  =  C )
)
38 oveq2 5975 . 2  |-  ( B  =  C  ->  ( A  +  B )  =  ( A  +  C ) )
3937, 38impbid1 142 1  |-  ( ( A  e.  RR  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960    + caddc 7963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-resscn 8052  ax-1cn 8053  ax-icn 8055  ax-addcl 8056  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0id 8068  ax-rnegex 8069
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970
This theorem is referenced by:  cnegexlem3  8284
  Copyright terms: Public domain W3C validator