ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negneg Unicode version

Theorem negneg 8209
Description: A number is equal to the negative of its negative. Theorem I.4 of [Apostol] p. 18. (Contributed by NM, 12-Jan-2002.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
negneg  |-  ( A  e.  CC  ->  -u -u A  =  A )

Proof of Theorem negneg
StepHypRef Expression
1 df-neg 8133 . . 3  |-  -u -u A  =  ( 0  - 
-u A )
2 0cn 7951 . . . 4  |-  0  e.  CC
3 subneg 8208 . . . 4  |-  ( ( 0  e.  CC  /\  A  e.  CC )  ->  ( 0  -  -u A
)  =  ( 0  +  A ) )
42, 3mpan 424 . . 3  |-  ( A  e.  CC  ->  (
0  -  -u A
)  =  ( 0  +  A ) )
51, 4eqtrid 2222 . 2  |-  ( A  e.  CC  ->  -u -u A  =  ( 0  +  A ) )
6 addlid 8098 . 2  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
75, 6eqtrd 2210 1  |-  ( A  e.  CC  ->  -u -u A  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148  (class class class)co 5877   CCcc 7811   0cc0 7813    + caddc 7816    - cmin 8130   -ucneg 8131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538  ax-resscn 7905  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-sub 8132  df-neg 8133
This theorem is referenced by:  neg11  8210  negcon1  8211  negreb  8224  negnegi  8229  negnegd  8261  negf1o  8341  mul2neg  8357  divneg2ap  8695  nnnegz  9258  znegclb  9288  expineg2  10531  shftcan2  10846  negfi  11238  dvdsnegb  11817
  Copyright terms: Public domain W3C validator