ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcan Unicode version

Theorem addcan 8206
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addcan  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )

Proof of Theorem addcan
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnegex2 8205 . . 3  |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
213ad2ant1 1020 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  CC  ( x  +  A )  =  0 )
3 oveq2 5930 . . . 4  |-  ( ( A  +  B )  =  ( A  +  C )  ->  (
x  +  ( A  +  B ) )  =  ( x  +  ( A  +  C
) ) )
4 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( x  +  A )  =  0 )
54oveq1d 5937 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  B )  =  ( 0  +  B
) )
6 simprl 529 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  x  e.  CC )
7 simpl1 1002 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  A  e.  CC )
8 simpl2 1003 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  B  e.  CC )
96, 7, 8addassd 8049 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  B )  =  ( x  +  ( A  +  B ) ) )
10 addlid 8165 . . . . . . 7  |-  ( B  e.  CC  ->  (
0  +  B )  =  B )
118, 10syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( 0  +  B )  =  B )
125, 9, 113eqtr3d 2237 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( x  +  ( A  +  B ) )  =  B )
134oveq1d 5937 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  C )  =  ( 0  +  C
) )
14 simpl3 1004 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  C  e.  CC )
156, 7, 14addassd 8049 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  C )  =  ( x  +  ( A  +  C ) ) )
16 addlid 8165 . . . . . . 7  |-  ( C  e.  CC  ->  (
0  +  C )  =  C )
1714, 16syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( 0  +  C )  =  C )
1813, 15, 173eqtr3d 2237 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( x  +  ( A  +  C ) )  =  C )
1912, 18eqeq12d 2211 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  ( A  +  B ) )  =  ( x  +  ( A  +  C
) )  <->  B  =  C ) )
203, 19imbitrid 154 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( ( A  +  B )  =  ( A  +  C )  ->  B  =  C ) )
21 oveq2 5930 . . 3  |-  ( B  =  C  ->  ( A  +  B )  =  ( A  +  C ) )
2220, 21impbid1 142 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( ( A  +  B )  =  ( A  +  C )  <->  B  =  C ) )
232, 22rexlimddv 2619 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476  (class class class)co 5922   CCcc 7877   0cc0 7879    + caddc 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  addcani  8208  addcand  8210  subcan  8281
  Copyright terms: Public domain W3C validator