| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addcan | Unicode version | ||
| Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex2 8321 |
. . 3
| |
| 2 | 1 | 3ad2ant1 1042 |
. 2
|
| 3 | oveq2 6008 |
. . . 4
| |
| 4 | simprr 531 |
. . . . . . 7
| |
| 5 | 4 | oveq1d 6015 |
. . . . . 6
|
| 6 | simprl 529 |
. . . . . . 7
| |
| 7 | simpl1 1024 |
. . . . . . 7
| |
| 8 | simpl2 1025 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | addassd 8165 |
. . . . . 6
|
| 10 | addlid 8281 |
. . . . . . 7
| |
| 11 | 8, 10 | syl 14 |
. . . . . 6
|
| 12 | 5, 9, 11 | 3eqtr3d 2270 |
. . . . 5
|
| 13 | 4 | oveq1d 6015 |
. . . . . 6
|
| 14 | simpl3 1026 |
. . . . . . 7
| |
| 15 | 6, 7, 14 | addassd 8165 |
. . . . . 6
|
| 16 | addlid 8281 |
. . . . . . 7
| |
| 17 | 14, 16 | syl 14 |
. . . . . 6
|
| 18 | 13, 15, 17 | 3eqtr3d 2270 |
. . . . 5
|
| 19 | 12, 18 | eqeq12d 2244 |
. . . 4
|
| 20 | 3, 19 | imbitrid 154 |
. . 3
|
| 21 | oveq2 6008 |
. . 3
| |
| 22 | 20, 21 | impbid1 142 |
. 2
|
| 23 | 2, 22 | rexlimddv 2653 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: addcani 8324 addcand 8326 subcan 8397 |
| Copyright terms: Public domain | W3C validator |