ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcan Unicode version

Theorem addcan 8078
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addcan  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )

Proof of Theorem addcan
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnegex2 8077 . . 3  |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
213ad2ant1 1008 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  CC  ( x  +  A )  =  0 )
3 oveq2 5850 . . . 4  |-  ( ( A  +  B )  =  ( A  +  C )  ->  (
x  +  ( A  +  B ) )  =  ( x  +  ( A  +  C
) ) )
4 simprr 522 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( x  +  A )  =  0 )
54oveq1d 5857 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  B )  =  ( 0  +  B
) )
6 simprl 521 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  x  e.  CC )
7 simpl1 990 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  A  e.  CC )
8 simpl2 991 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  B  e.  CC )
96, 7, 8addassd 7921 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  B )  =  ( x  +  ( A  +  B ) ) )
10 addid2 8037 . . . . . . 7  |-  ( B  e.  CC  ->  (
0  +  B )  =  B )
118, 10syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( 0  +  B )  =  B )
125, 9, 113eqtr3d 2206 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( x  +  ( A  +  B ) )  =  B )
134oveq1d 5857 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  C )  =  ( 0  +  C
) )
14 simpl3 992 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  C  e.  CC )
156, 7, 14addassd 7921 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  C )  =  ( x  +  ( A  +  C ) ) )
16 addid2 8037 . . . . . . 7  |-  ( C  e.  CC  ->  (
0  +  C )  =  C )
1714, 16syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( 0  +  C )  =  C )
1813, 15, 173eqtr3d 2206 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( x  +  ( A  +  C ) )  =  C )
1912, 18eqeq12d 2180 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  ( A  +  B ) )  =  ( x  +  ( A  +  C
) )  <->  B  =  C ) )
203, 19syl5ib 153 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( ( A  +  B )  =  ( A  +  C )  ->  B  =  C ) )
21 oveq2 5850 . . 3  |-  ( B  =  C  ->  ( A  +  B )  =  ( A  +  C ) )
2220, 21impbid1 141 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( ( A  +  B )  =  ( A  +  C )  <->  B  =  C ) )
232, 22rexlimddv 2588 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   E.wrex 2445  (class class class)co 5842   CCcc 7751   0cc0 7753    + caddc 7756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  addcani  8080  addcand  8082  subcan  8153
  Copyright terms: Public domain W3C validator