Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcan | Unicode version |
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnegex2 8033 | . . 3 | |
2 | 1 | 3ad2ant1 1003 | . 2 |
3 | oveq2 5822 | . . . 4 | |
4 | simprr 522 | . . . . . . 7 | |
5 | 4 | oveq1d 5829 | . . . . . 6 |
6 | simprl 521 | . . . . . . 7 | |
7 | simpl1 985 | . . . . . . 7 | |
8 | simpl2 986 | . . . . . . 7 | |
9 | 6, 7, 8 | addassd 7879 | . . . . . 6 |
10 | addid2 7993 | . . . . . . 7 | |
11 | 8, 10 | syl 14 | . . . . . 6 |
12 | 5, 9, 11 | 3eqtr3d 2195 | . . . . 5 |
13 | 4 | oveq1d 5829 | . . . . . 6 |
14 | simpl3 987 | . . . . . . 7 | |
15 | 6, 7, 14 | addassd 7879 | . . . . . 6 |
16 | addid2 7993 | . . . . . . 7 | |
17 | 14, 16 | syl 14 | . . . . . 6 |
18 | 13, 15, 17 | 3eqtr3d 2195 | . . . . 5 |
19 | 12, 18 | eqeq12d 2169 | . . . 4 |
20 | 3, 19 | syl5ib 153 | . . 3 |
21 | oveq2 5822 | . . 3 | |
22 | 20, 21 | impbid1 141 | . 2 |
23 | 2, 22 | rexlimddv 2576 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1332 wcel 2125 wrex 2433 (class class class)co 5814 cc 7709 cc0 7711 caddc 7714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 ax-resscn 7803 ax-1cn 7804 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 |
This theorem is referenced by: addcani 8036 addcand 8038 subcan 8109 |
Copyright terms: Public domain | W3C validator |