Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addcan | Unicode version |
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnegex2 8077 | . . 3 | |
2 | 1 | 3ad2ant1 1008 | . 2 |
3 | oveq2 5850 | . . . 4 | |
4 | simprr 522 | . . . . . . 7 | |
5 | 4 | oveq1d 5857 | . . . . . 6 |
6 | simprl 521 | . . . . . . 7 | |
7 | simpl1 990 | . . . . . . 7 | |
8 | simpl2 991 | . . . . . . 7 | |
9 | 6, 7, 8 | addassd 7921 | . . . . . 6 |
10 | addid2 8037 | . . . . . . 7 | |
11 | 8, 10 | syl 14 | . . . . . 6 |
12 | 5, 9, 11 | 3eqtr3d 2206 | . . . . 5 |
13 | 4 | oveq1d 5857 | . . . . . 6 |
14 | simpl3 992 | . . . . . . 7 | |
15 | 6, 7, 14 | addassd 7921 | . . . . . 6 |
16 | addid2 8037 | . . . . . . 7 | |
17 | 14, 16 | syl 14 | . . . . . 6 |
18 | 13, 15, 17 | 3eqtr3d 2206 | . . . . 5 |
19 | 12, 18 | eqeq12d 2180 | . . . 4 |
20 | 3, 19 | syl5ib 153 | . . 3 |
21 | oveq2 5850 | . . 3 | |
22 | 20, 21 | impbid1 141 | . 2 |
23 | 2, 22 | rexlimddv 2588 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 wrex 2445 (class class class)co 5842 cc 7751 cc0 7753 caddc 7756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: addcani 8080 addcand 8082 subcan 8153 |
Copyright terms: Public domain | W3C validator |