ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcan Unicode version

Theorem addcan 8034
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addcan  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )

Proof of Theorem addcan
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cnegex2 8033 . . 3  |-  ( A  e.  CC  ->  E. x  e.  CC  ( x  +  A )  =  0 )
213ad2ant1 1003 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  E. x  e.  CC  ( x  +  A )  =  0 )
3 oveq2 5822 . . . 4  |-  ( ( A  +  B )  =  ( A  +  C )  ->  (
x  +  ( A  +  B ) )  =  ( x  +  ( A  +  C
) ) )
4 simprr 522 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( x  +  A )  =  0 )
54oveq1d 5829 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  B )  =  ( 0  +  B
) )
6 simprl 521 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  x  e.  CC )
7 simpl1 985 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  A  e.  CC )
8 simpl2 986 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  B  e.  CC )
96, 7, 8addassd 7879 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  B )  =  ( x  +  ( A  +  B ) ) )
10 addid2 7993 . . . . . . 7  |-  ( B  e.  CC  ->  (
0  +  B )  =  B )
118, 10syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( 0  +  B )  =  B )
125, 9, 113eqtr3d 2195 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( x  +  ( A  +  B ) )  =  B )
134oveq1d 5829 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  C )  =  ( 0  +  C
) )
14 simpl3 987 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  C  e.  CC )
156, 7, 14addassd 7879 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  A )  +  C )  =  ( x  +  ( A  +  C ) ) )
16 addid2 7993 . . . . . . 7  |-  ( C  e.  CC  ->  (
0  +  C )  =  C )
1714, 16syl 14 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( 0  +  C )  =  C )
1813, 15, 173eqtr3d 2195 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( x  +  ( A  +  C ) )  =  C )
1912, 18eqeq12d 2169 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( (
x  +  ( A  +  B ) )  =  ( x  +  ( A  +  C
) )  <->  B  =  C ) )
203, 19syl5ib 153 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( ( A  +  B )  =  ( A  +  C )  ->  B  =  C ) )
21 oveq2 5822 . . 3  |-  ( B  =  C  ->  ( A  +  B )  =  ( A  +  C ) )
2220, 21impbid1 141 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  /\  ( x  e.  CC  /\  ( x  +  A
)  =  0 ) )  ->  ( ( A  +  B )  =  ( A  +  C )  <->  B  =  C ) )
232, 22rexlimddv 2576 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  +  B
)  =  ( A  +  C )  <->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 2125   E.wrex 2433  (class class class)co 5814   CCcc 7709   0cc0 7711    + caddc 7714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-resscn 7803  ax-1cn 7804  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-iota 5128  df-fv 5171  df-ov 5817
This theorem is referenced by:  addcani  8036  addcand  8038  subcan  8109
  Copyright terms: Public domain W3C validator