ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid2 GIF version

Theorem addid2 8058
Description: 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addid2 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)

Proof of Theorem addid2
StepHypRef Expression
1 0cn 7912 . . 3 0 ∈ ℂ
2 addcom 8056 . . 3 ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + 0) = (0 + 𝐴))
31, 2mpan2 423 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = (0 + 𝐴))
4 addid1 8057 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
53, 4eqtr3d 2205 1 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  (class class class)co 5853  cc 7772  0cc0 7774   + caddc 7777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-mulcl 7872  ax-addcom 7874  ax-i2m1 7879  ax-0id 7882
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  readdcan  8059  addid2i  8062  addid2d  8069  cnegexlem1  8094  cnegexlem2  8095  addcan  8099  negneg  8169  fz0to4untppr  10080  fzoaddel2  10149  divfl0  10252  modqid  10305  sumrbdclem  11340  summodclem2a  11344  fisum0diag2  11410  eftlub  11653  gcdid  11941  ptolemy  13539
  Copyright terms: Public domain W3C validator