Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2 | GIF version |
Description: 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
addid2 | ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7912 | . . 3 ⊢ 0 ∈ ℂ | |
2 | addcom 8056 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + 0) = (0 + 𝐴)) | |
3 | 1, 2 | mpan2 423 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = (0 + 𝐴)) |
4 | addid1 8057 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
5 | 3, 4 | eqtr3d 2205 | 1 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 0cc0 7774 + caddc 7777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-addcom 7874 ax-i2m1 7879 ax-0id 7882 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-clel 2166 |
This theorem is referenced by: readdcan 8059 addid2i 8062 addid2d 8069 cnegexlem1 8094 cnegexlem2 8095 addcan 8099 negneg 8169 fz0to4untppr 10080 fzoaddel2 10149 divfl0 10252 modqid 10305 sumrbdclem 11340 summodclem2a 11344 fisum0diag2 11410 eftlub 11653 gcdid 11941 ptolemy 13539 |
Copyright terms: Public domain | W3C validator |