Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > addid2 | GIF version |
Description: 0 is a left identity for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
addid2 | ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7887 | . . 3 ⊢ 0 ∈ ℂ | |
2 | addcom 8031 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 0 ∈ ℂ) → (𝐴 + 0) = (0 + 𝐴)) | |
3 | 1, 2 | mpan2 422 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = (0 + 𝐴)) |
4 | addid1 8032 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
5 | 3, 4 | eqtr3d 2200 | 1 ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 (class class class)co 5841 ℂcc 7747 0cc0 7749 + caddc 7752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 ax-1cn 7842 ax-icn 7844 ax-addcl 7845 ax-mulcl 7847 ax-addcom 7849 ax-i2m1 7854 ax-0id 7857 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: readdcan 8034 addid2i 8037 addid2d 8044 cnegexlem1 8069 cnegexlem2 8070 addcan 8074 negneg 8144 fz0to4untppr 10055 fzoaddel2 10124 divfl0 10227 modqid 10280 sumrbdclem 11314 summodclem2a 11318 fisum0diag2 11384 eftlub 11627 gcdid 11915 ptolemy 13345 |
Copyright terms: Public domain | W3C validator |