ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eftlub Unicode version

Theorem eftlub 11306
Description: An upper bound on the absolute value of the infinite tail of the series expansion of the exponential function on the closed unit disk. (Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
Hypotheses
Ref Expression
eftl.1  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
eftl.2  |-  G  =  ( n  e.  NN0  |->  ( ( ( abs `  A ) ^ n
)  /  ( ! `
 n ) ) )
eftl.3  |-  H  =  ( n  e.  NN0  |->  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ n ) ) )
eftl.4  |-  ( ph  ->  M  e.  NN )
eftl.5  |-  ( ph  ->  A  e.  CC )
eftl.6  |-  ( ph  ->  ( abs `  A
)  <_  1 )
Assertion
Ref Expression
eftlub  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  M ) ( F `
 k ) )  <_  ( ( ( abs `  A ) ^ M )  x.  ( ( M  + 
1 )  /  (
( ! `  M
)  x.  M ) ) ) )
Distinct variable groups:    k, n, A   
k, F    k, G    k, M, n    ph, k
Allowed substitution hints:    ph( n)    F( n)    G( n)    H( k, n)

Proof of Theorem eftlub
Dummy variables  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eftl.5 . . . 4  |-  ( ph  ->  A  e.  CC )
2 eftl.4 . . . . 5  |-  ( ph  ->  M  e.  NN )
32nnnn0d 8984 . . . 4  |-  ( ph  ->  M  e.  NN0 )
4 eftl.1 . . . . 5  |-  F  =  ( n  e.  NN0  |->  ( ( A ^
n )  /  ( ! `  n )
) )
54eftlcl 11304 . . . 4  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= `  M ) ( F `
 k )  e.  CC )
61, 3, 5syl2anc 406 . . 3  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( F `  k )  e.  CC )
76abscld 10904 . 2  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  M ) ( F `
 k ) )  e.  RR )
81abscld 10904 . . 3  |-  ( ph  ->  ( abs `  A
)  e.  RR )
9 eftl.2 . . . 4  |-  G  =  ( n  e.  NN0  |->  ( ( ( abs `  A ) ^ n
)  /  ( ! `
 n ) ) )
109reeftlcl 11305 . . 3  |-  ( ( ( abs `  A
)  e.  RR  /\  M  e.  NN0 )  ->  sum_ k  e.  ( ZZ>= `  M ) ( G `
 k )  e.  RR )
118, 3, 10syl2anc 406 . 2  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( G `  k )  e.  RR )
128, 3reexpcld 10392 . . 3  |-  ( ph  ->  ( ( abs `  A
) ^ M )  e.  RR )
13 peano2nn0 8971 . . . . . 6  |-  ( M  e.  NN0  ->  ( M  +  1 )  e. 
NN0 )
143, 13syl 14 . . . . 5  |-  ( ph  ->  ( M  +  1 )  e.  NN0 )
1514nn0red 8985 . . . 4  |-  ( ph  ->  ( M  +  1 )  e.  RR )
163faccld 10433 . . . . 5  |-  ( ph  ->  ( ! `  M
)  e.  NN )
1716, 2nnmulcld 8729 . . . 4  |-  ( ph  ->  ( ( ! `  M )  x.  M
)  e.  NN )
1815, 17nndivred 8730 . . 3  |-  ( ph  ->  ( ( M  + 
1 )  /  (
( ! `  M
)  x.  M ) )  e.  RR )
1912, 18remulcld 7760 . 2  |-  ( ph  ->  ( ( ( abs `  A ) ^ M
)  x.  ( ( M  +  1 )  /  ( ( ! `
 M )  x.  M ) ) )  e.  RR )
20 eqid 2115 . . 3  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
212nnzd 9126 . . . 4  |-  ( ph  ->  M  e.  ZZ )
22 eqidd 2116 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  =  ( F `  k ) )
23 eluznn0 9345 . . . . . 6  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
243, 23sylan 279 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  NN0 )
254eftvalcn 11273 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( F `  k
)  =  ( ( A ^ k )  /  ( ! `  k ) ) )
261, 25sylan 279 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  =  ( ( A ^ k
)  /  ( ! `
 k ) ) )
27 eftcl 11270 . . . . . . 7  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( A ^
k )  /  ( ! `  k )
)  e.  CC )
281, 27sylan 279 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( A ^ k )  / 
( ! `  k
) )  e.  CC )
2926, 28eqeltrd 2192 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  CC )
3024, 29syldan 278 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
314eftlcvg 11303 . . . . 5  |-  ( ( A  e.  CC  /\  M  e.  NN0 )  ->  seq M (  +  ,  F )  e.  dom  ~~>  )
321, 3, 31syl2anc 406 . . . 4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
3320, 21, 22, 30, 32isumclim2 11142 . . 3  |-  ( ph  ->  seq M (  +  ,  F )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( F `  k
) )
34 eqidd 2116 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( G `  k ) )
358recnd 7758 . . . . . . . 8  |-  ( ph  ->  ( abs `  A
)  e.  CC )
369eftvalcn 11273 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( G `  k
)  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
3735, 36sylan 279 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
38 reeftcl 11271 . . . . . . . 8  |-  ( ( ( abs `  A
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( ( abs `  A ) ^ k
)  /  ( ! `
 k ) )  e.  RR )
398, 38sylan 279 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( abs `  A
) ^ k )  /  ( ! `  k ) )  e.  RR )
4037, 39eqeltrd 2192 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  RR )
4124, 40syldan 278 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  RR )
4241recnd 7758 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
439eftlcvg 11303 . . . . 5  |-  ( ( ( abs `  A
)  e.  CC  /\  M  e.  NN0 )  ->  seq M (  +  ,  G )  e.  dom  ~~>  )
4435, 3, 43syl2anc 406 . . . 4  |-  ( ph  ->  seq M (  +  ,  G )  e. 
dom 
~~>  )
4520, 21, 34, 42, 44isumclim2 11142 . . 3  |-  ( ph  ->  seq M (  +  ,  G )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( G `  k
) )
46 eftabs 11272 . . . . . 6  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  /  ( ! `
 k ) ) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
471, 46sylan 279 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( ( A ^
k )  /  ( ! `  k )
) )  =  ( ( ( abs `  A
) ^ k )  /  ( ! `  k ) ) )
4826fveq2d 5391 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( abs `  ( F `  k
) )  =  ( abs `  ( ( A ^ k )  /  ( ! `  k ) ) ) )
4947, 48, 373eqtr4rd 2159 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  ( abs `  ( F `
 k ) ) )
5024, 49syldan 278 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  =  ( abs `  ( F `
 k ) ) )
5120, 33, 45, 21, 30, 50iserabs 11195 . 2  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  M ) ( F `
 k ) )  <_  sum_ k  e.  (
ZZ>= `  M ) ( G `  k ) )
52 nn0uz 9312 . . . 4  |-  NN0  =  ( ZZ>= `  0 )
53 0zd 9020 . . . 4  |-  ( ph  ->  0  e.  ZZ )
542nncnd 8694 . . . . 5  |-  ( ph  ->  M  e.  CC )
55 nn0cn 8941 . . . . 5  |-  ( j  e.  NN0  ->  j  e.  CC )
56 nn0ex 8937 . . . . . . . 8  |-  NN0  e.  _V
5756mptex 5612 . . . . . . 7  |-  ( n  e.  NN0  |->  ( ( ( abs `  A
) ^ n )  /  ( ! `  n ) ) )  e.  _V
589, 57eqeltri 2188 . . . . . 6  |-  G  e. 
_V
5958shftval4 10551 . . . . 5  |-  ( ( M  e.  CC  /\  j  e.  CC )  ->  ( ( G  shift  -u M ) `  j
)  =  ( G `
 ( M  +  j ) ) )
6054, 55, 59syl2an 285 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( G  shift  -u M ) `  j )  =  ( G `  ( M  +  j ) ) )
6135adantr 272 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  A )  e.  CC )
62 nn0addcl 8966 . . . . . . 7  |-  ( ( M  e.  NN0  /\  j  e.  NN0 )  -> 
( M  +  j )  e.  NN0 )
633, 62sylan 279 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( M  +  j )  e. 
NN0 )
649eftvalcn 11273 . . . . . 6  |-  ( ( ( abs `  A
)  e.  CC  /\  ( M  +  j
)  e.  NN0 )  ->  ( G `  ( M  +  j )
)  =  ( ( ( abs `  A
) ^ ( M  +  j ) )  /  ( ! `  ( M  +  j
) ) ) )
6561, 63, 64syl2anc 406 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( M  +  j ) )  =  ( ( ( abs `  A
) ^ ( M  +  j ) )  /  ( ! `  ( M  +  j
) ) ) )
668adantr 272 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  A )  e.  RR )
67 reeftcl 11271 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR  /\  ( M  +  j
)  e.  NN0 )  ->  ( ( ( abs `  A ) ^ ( M  +  j )
)  /  ( ! `
 ( M  +  j ) ) )  e.  RR )
6866, 63, 67syl2anc 406 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( abs `  A
) ^ ( M  +  j ) )  /  ( ! `  ( M  +  j
) ) )  e.  RR )
6965, 68eqeltrd 2192 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( M  +  j ) )  e.  RR )
70 simpr 109 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  NN0 )
7112, 16nndivred 8730 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  e.  RR )
7271adantr 272 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( abs `  A
) ^ M )  /  ( ! `  M ) )  e.  RR )
732peano2nnd 8695 . . . . . . . 8  |-  ( ph  ->  ( M  +  1 )  e.  NN )
7473nnrecred 8727 . . . . . . 7  |-  ( ph  ->  ( 1  /  ( M  +  1 ) )  e.  RR )
75 reexpcl 10261 . . . . . . 7  |-  ( ( ( 1  /  ( M  +  1 ) )  e.  RR  /\  j  e.  NN0 )  -> 
( ( 1  / 
( M  +  1 ) ) ^ j
)  e.  RR )
7674, 75sylan 279 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  /  ( M  +  1 ) ) ^ j )  e.  RR )
7772, 76remulcld 7760 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  / 
( M  +  1 ) ) ^ j
) )  e.  RR )
78 oveq2 5748 . . . . . . 7  |-  ( n  =  j  ->  (
( 1  /  ( M  +  1 ) ) ^ n )  =  ( ( 1  /  ( M  + 
1 ) ) ^
j ) )
7978oveq2d 5756 . . . . . 6  |-  ( n  =  j  ->  (
( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( ( 1  /  ( M  + 
1 ) ) ^
n ) )  =  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ j ) ) )
80 eftl.3 . . . . . 6  |-  H  =  ( n  e.  NN0  |->  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ n ) ) )
8179, 80fvmptg 5463 . . . . 5  |-  ( ( j  e.  NN0  /\  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ j ) )  e.  RR )  ->  ( H `  j )  =  ( ( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( ( 1  /  ( M  + 
1 ) ) ^
j ) ) )
8270, 77, 81syl2anc 406 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( H `  j )  =  ( ( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( ( 1  /  ( M  + 
1 ) ) ^
j ) ) )
8366, 63reexpcld 10392 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  A ) ^
( M  +  j ) )  e.  RR )
8412adantr 272 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  A ) ^ M )  e.  RR )
8563faccld 10433 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  ( M  +  j ) )  e.  NN )
8685nnred 8693 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  ( M  +  j ) )  e.  RR )
8786, 77remulcld 7760 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( ! `  ( M  +  j ) )  x.  ( ( ( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  / 
( M  +  1 ) ) ^ j
) ) )  e.  RR )
883adantr 272 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  M  e.  NN0 )
89 uzid 9292 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
9021, 89syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
91 uzaddcl 9333 . . . . . . . . 9  |-  ( ( M  e.  ( ZZ>= `  M )  /\  j  e.  NN0 )  ->  ( M  +  j )  e.  ( ZZ>= `  M )
)
9290, 91sylan 279 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( M  +  j )  e.  ( ZZ>= `  M )
)
931absge0d 10907 . . . . . . . . 9  |-  ( ph  ->  0  <_  ( abs `  A ) )
9493adantr 272 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <_  ( abs `  A ) )
95 eftl.6 . . . . . . . . 9  |-  ( ph  ->  ( abs `  A
)  <_  1 )
9695adantr 272 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  A )  <_  1
)
9766, 88, 92, 94, 96leexp2rd 10405 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  A ) ^
( M  +  j ) )  <_  (
( abs `  A
) ^ M ) )
9816adantr 272 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  M )  e.  NN )
99 nnexpcl 10257 . . . . . . . . . . . . 13  |-  ( ( ( M  +  1 )  e.  NN  /\  j  e.  NN0 )  -> 
( ( M  + 
1 ) ^ j
)  e.  NN )
10073, 99sylan 279 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( M  +  1 ) ^ j )  e.  NN )
10198, 100nnmulcld 8729 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( ! `  M )  x.  ( ( M  + 
1 ) ^ j
) )  e.  NN )
102101nnred 8693 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( ! `  M )  x.  ( ( M  + 
1 ) ^ j
) )  e.  RR )
1038, 3, 93expge0d 10393 . . . . . . . . . . . 12  |-  ( ph  ->  0  <_  ( ( abs `  A ) ^ M ) )
10412, 103jca 302 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( abs `  A ) ^ M
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ M
) ) )
105104adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( abs `  A
) ^ M )  e.  RR  /\  0  <_  ( ( abs `  A
) ^ M ) ) )
106 faclbnd6 10441 . . . . . . . . . . 11  |-  ( ( M  e.  NN0  /\  j  e.  NN0 )  -> 
( ( ! `  M )  x.  (
( M  +  1 ) ^ j ) )  <_  ( ! `  ( M  +  j ) ) )
1073, 106sylan 279 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( ! `  M )  x.  ( ( M  + 
1 ) ^ j
) )  <_  ( ! `  ( M  +  j ) ) )
108 lemul1a 8576 . . . . . . . . . 10  |-  ( ( ( ( ( ! `
 M )  x.  ( ( M  + 
1 ) ^ j
) )  e.  RR  /\  ( ! `  ( M  +  j )
)  e.  RR  /\  ( ( ( abs `  A ) ^ M
)  e.  RR  /\  0  <_  ( ( abs `  A ) ^ M
) ) )  /\  ( ( ! `  M )  x.  (
( M  +  1 ) ^ j ) )  <_  ( ! `  ( M  +  j ) ) )  -> 
( ( ( ! `
 M )  x.  ( ( M  + 
1 ) ^ j
) )  x.  (
( abs `  A
) ^ M ) )  <_  ( ( ! `  ( M  +  j ) )  x.  ( ( abs `  A ) ^ M
) ) )
109102, 86, 105, 107, 108syl31anc 1202 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ! `  M
)  x.  ( ( M  +  1 ) ^ j ) )  x.  ( ( abs `  A ) ^ M
) )  <_  (
( ! `  ( M  +  j )
)  x.  ( ( abs `  A ) ^ M ) ) )
11086, 84remulcld 7760 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( ! `  ( M  +  j ) )  x.  ( ( abs `  A ) ^ M
) )  e.  RR )
111101nnrpd 9433 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( ! `  M )  x.  ( ( M  + 
1 ) ^ j
) )  e.  RR+ )
11284, 110, 111lemuldiv2d 9485 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( ! `  M )  x.  (
( M  +  1 ) ^ j ) )  x.  ( ( abs `  A ) ^ M ) )  <_  ( ( ! `
 ( M  +  j ) )  x.  ( ( abs `  A
) ^ M ) )  <->  ( ( abs `  A ) ^ M
)  <_  ( (
( ! `  ( M  +  j )
)  x.  ( ( abs `  A ) ^ M ) )  /  ( ( ! `
 M )  x.  ( ( M  + 
1 ) ^ j
) ) ) ) )
113109, 112mpbid 146 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  A ) ^ M )  <_  (
( ( ! `  ( M  +  j
) )  x.  (
( abs `  A
) ^ M ) )  /  ( ( ! `  M )  x.  ( ( M  +  1 ) ^
j ) ) ) )
11485nncnd 8694 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  ( M  +  j ) )  e.  CC )
11512recnd 7758 . . . . . . . . . . 11  |-  ( ph  ->  ( ( abs `  A
) ^ M )  e.  CC )
116115adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  A ) ^ M )  e.  CC )
117101nncnd 8694 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( ! `  M )  x.  ( ( M  + 
1 ) ^ j
) )  e.  CC )
118101nnap0d 8726 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( ! `  M )  x.  ( ( M  + 
1 ) ^ j
) ) #  0 )
119114, 116, 117, 118divassapd 8549 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ! `  ( M  +  j )
)  x.  ( ( abs `  A ) ^ M ) )  /  ( ( ! `
 M )  x.  ( ( M  + 
1 ) ^ j
) ) )  =  ( ( ! `  ( M  +  j
) )  x.  (
( ( abs `  A
) ^ M )  /  ( ( ! `
 M )  x.  ( ( M  + 
1 ) ^ j
) ) ) ) )
12073nncnd 8694 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M  +  1 )  e.  CC )
121120adantr 272 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( M  +  1 )  e.  CC )
12273adantr 272 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( M  +  1 )  e.  NN )
123122nnap0d 8726 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( M  +  1 ) #  0 )
124 nn0z 9028 . . . . . . . . . . . . . 14  |-  ( j  e.  NN0  ->  j  e.  ZZ )
125124adantl 273 . . . . . . . . . . . . 13  |-  ( (
ph  /\  j  e.  NN0 )  ->  j  e.  ZZ )
126121, 123, 125exprecapd 10383 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  /  ( M  +  1 ) ) ^ j )  =  ( 1  /  (
( M  +  1 ) ^ j ) ) )
127126oveq2d 5756 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  / 
( M  +  1 ) ) ^ j
) )  =  ( ( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( 1  / 
( ( M  + 
1 ) ^ j
) ) ) )
12871recnd 7758 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  e.  CC )
129128adantr 272 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( abs `  A
) ^ M )  /  ( ! `  M ) )  e.  CC )
130100nncnd 8694 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( M  +  1 ) ^ j )  e.  CC )
131100nnap0d 8726 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( M  +  1 ) ^ j ) #  0 )
132129, 130, 131divrecapd 8516 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( abs `  A
) ^ M )  /  ( ! `  M ) )  / 
( ( M  + 
1 ) ^ j
) )  =  ( ( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( 1  / 
( ( M  + 
1 ) ^ j
) ) ) )
13316nncnd 8694 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ! `  M
)  e.  CC )
134133adantr 272 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  M )  e.  CC )
13598nnap0d 8726 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ! `  M ) #  0 )
136116, 134, 130, 135, 131divdivap1d 8545 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( abs `  A
) ^ M )  /  ( ! `  M ) )  / 
( ( M  + 
1 ) ^ j
) )  =  ( ( ( abs `  A
) ^ M )  /  ( ( ! `
 M )  x.  ( ( M  + 
1 ) ^ j
) ) ) )
137127, 132, 1363eqtr2rd 2155 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( abs `  A
) ^ M )  /  ( ( ! `
 M )  x.  ( ( M  + 
1 ) ^ j
) ) )  =  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ j ) ) )
138137oveq2d 5756 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( ! `  ( M  +  j ) )  x.  ( ( ( abs `  A ) ^ M )  / 
( ( ! `  M )  x.  (
( M  +  1 ) ^ j ) ) ) )  =  ( ( ! `  ( M  +  j
) )  x.  (
( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( ( 1  /  ( M  + 
1 ) ) ^
j ) ) ) )
139119, 138eqtrd 2148 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ! `  ( M  +  j )
)  x.  ( ( abs `  A ) ^ M ) )  /  ( ( ! `
 M )  x.  ( ( M  + 
1 ) ^ j
) ) )  =  ( ( ! `  ( M  +  j
) )  x.  (
( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( ( 1  /  ( M  + 
1 ) ) ^
j ) ) ) )
140113, 139breqtrd 3922 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  A ) ^ M )  <_  (
( ! `  ( M  +  j )
)  x.  ( ( ( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  / 
( M  +  1 ) ) ^ j
) ) ) )
14183, 84, 87, 97, 140letrd 7850 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  A ) ^
( M  +  j ) )  <_  (
( ! `  ( M  +  j )
)  x.  ( ( ( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  / 
( M  +  1 ) ) ^ j
) ) ) )
14285nngt0d 8724 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <  ( ! `  ( M  +  j ) ) )
143 ledivmul 8595 . . . . . . 7  |-  ( ( ( ( abs `  A
) ^ ( M  +  j ) )  e.  RR  /\  (
( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( ( 1  /  ( M  + 
1 ) ) ^
j ) )  e.  RR  /\  ( ( ! `  ( M  +  j ) )  e.  RR  /\  0  <  ( ! `  ( M  +  j )
) ) )  -> 
( ( ( ( abs `  A ) ^ ( M  +  j ) )  / 
( ! `  ( M  +  j )
) )  <_  (
( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( ( 1  /  ( M  + 
1 ) ) ^
j ) )  <->  ( ( abs `  A ) ^
( M  +  j ) )  <_  (
( ! `  ( M  +  j )
)  x.  ( ( ( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  / 
( M  +  1 ) ) ^ j
) ) ) ) )
14483, 77, 86, 142, 143syl112anc 1203 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( abs `  A
) ^ ( M  +  j ) )  /  ( ! `  ( M  +  j
) ) )  <_ 
( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ j ) )  <->  ( ( abs `  A ) ^ ( M  +  j )
)  <_  ( ( ! `  ( M  +  j ) )  x.  ( ( ( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  / 
( M  +  1 ) ) ^ j
) ) ) ) )
145141, 144mpbird 166 . . . . 5  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( abs `  A
) ^ ( M  +  j ) )  /  ( ! `  ( M  +  j
) ) )  <_ 
( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ j ) ) )
14665, 145eqbrtrd 3918 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( G `  ( M  +  j ) )  <_  (
( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( ( 1  /  ( M  + 
1 ) ) ^
j ) ) )
14758a1i 9 . . . . . 6  |-  ( ph  ->  G  e.  _V )
14821znegcld 9129 . . . . . 6  |-  ( ph  -> 
-u M  e.  ZZ )
149 0cn 7722 . . . . . . . . . . . . 13  |-  0  e.  CC
150 subneg 7975 . . . . . . . . . . . . 13  |-  ( ( 0  e.  CC  /\  M  e.  CC )  ->  ( 0  -  -u M
)  =  ( 0  +  M ) )
151149, 150mpan 418 . . . . . . . . . . . 12  |-  ( M  e.  CC  ->  (
0  -  -u M
)  =  ( 0  +  M ) )
152 addid2 7865 . . . . . . . . . . . 12  |-  ( M  e.  CC  ->  (
0  +  M )  =  M )
153151, 152eqtrd 2148 . . . . . . . . . . 11  |-  ( M  e.  CC  ->  (
0  -  -u M
)  =  M )
15454, 153syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( 0  -  -u M
)  =  M )
155154fveq2d 5391 . . . . . . . . 9  |-  ( ph  ->  ( ZZ>= `  ( 0  -  -u M ) )  =  ( ZZ>= `  M
) )
156155eleq2d 2185 . . . . . . . 8  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( 0  - 
-u M ) )  <-> 
k  e.  ( ZZ>= `  M ) ) )
157156pm5.32i 447 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( 0  -  -u M ) ) )  <->  ( ph  /\  k  e.  ( ZZ>= `  M ) ) )
158157, 41sylbi 120 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( 0  -  -u M ) ) )  ->  ( G `  k )  e.  RR )
159 readdcl 7710 . . . . . . 7  |-  ( ( k  e.  RR  /\  y  e.  RR )  ->  ( k  +  y )  e.  RR )
160159adantl 273 . . . . . 6  |-  ( (
ph  /\  ( k  e.  RR  /\  y  e.  RR ) )  -> 
( k  +  y )  e.  RR )
161147, 53, 148, 158, 160seq3shft 10561 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  ( G  shift  -u M ) )  =  (  seq ( 0  -  -u M ) (  +  ,  G ) 
shift  -u M ) )
162 seqex 10171 . . . . . . 7  |-  seq (
0  -  -u M
) (  +  ,  G )  e.  _V
16354negcld 8024 . . . . . . 7  |-  ( ph  -> 
-u M  e.  CC )
164 ovshftex 10542 . . . . . . 7  |-  ( (  seq ( 0  - 
-u M ) (  +  ,  G )  e.  _V  /\  -u M  e.  CC )  ->  (  seq ( 0  -  -u M
) (  +  ,  G )  shift  -u M
)  e.  _V )
165162, 163, 164sylancr 408 . . . . . 6  |-  ( ph  ->  (  seq ( 0  -  -u M ) (  +  ,  G ) 
shift  -u M )  e. 
_V )
16620, 21, 34, 41, 44isumrecl 11149 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( G `  k )  e.  RR )
167154seqeq1d 10175 . . . . . . . 8  |-  ( ph  ->  seq ( 0  - 
-u M ) (  +  ,  G )  =  seq M (  +  ,  G ) )
168167, 45eqbrtrd 3918 . . . . . . 7  |-  ( ph  ->  seq ( 0  - 
-u M ) (  +  ,  G )  ~~> 
sum_ k  e.  (
ZZ>= `  M ) ( G `  k ) )
169 climshft 11024 . . . . . . . 8  |-  ( (
-u M  e.  ZZ  /\ 
seq ( 0  - 
-u M ) (  +  ,  G )  e.  _V )  -> 
( (  seq (
0  -  -u M
) (  +  ,  G )  shift  -u M
)  ~~>  sum_ k  e.  (
ZZ>= `  M ) ( G `  k )  <->  seq ( 0  -  -u M
) (  +  ,  G )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( G `  k
) ) )
170148, 162, 169sylancl 407 . . . . . . 7  |-  ( ph  ->  ( (  seq (
0  -  -u M
) (  +  ,  G )  shift  -u M
)  ~~>  sum_ k  e.  (
ZZ>= `  M ) ( G `  k )  <->  seq ( 0  -  -u M
) (  +  ,  G )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( G `  k
) ) )
171168, 170mpbird 166 . . . . . 6  |-  ( ph  ->  (  seq ( 0  -  -u M ) (  +  ,  G ) 
shift  -u M )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( G `  k
) )
172 breldmg 4713 . . . . . 6  |-  ( ( (  seq ( 0  -  -u M ) (  +  ,  G ) 
shift  -u M )  e. 
_V  /\  sum_ k  e.  ( ZZ>= `  M )
( G `  k
)  e.  RR  /\  (  seq ( 0  - 
-u M ) (  +  ,  G ) 
shift  -u M )  ~~>  sum_ k  e.  ( ZZ>= `  M )
( G `  k
) )  ->  (  seq ( 0  -  -u M
) (  +  ,  G )  shift  -u M
)  e.  dom  ~~>  )
173165, 166, 171, 172syl3anc 1199 . . . . 5  |-  ( ph  ->  (  seq ( 0  -  -u M ) (  +  ,  G ) 
shift  -u M )  e. 
dom 
~~>  )
174161, 173eqeltrd 2192 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  ( G  shift  -u M ) )  e. 
dom 
~~>  )
175 seqex 10171 . . . . . 6  |-  seq 0
(  +  ,  H
)  e.  _V
176175a1i 9 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  H )  e. 
_V )
1772nnge1d 8723 . . . . . . . . . 10  |-  ( ph  ->  1  <_  M )
178 1nn 8691 . . . . . . . . . . 11  |-  1  e.  NN
179 nnleltp1 9067 . . . . . . . . . . 11  |-  ( ( 1  e.  NN  /\  M  e.  NN )  ->  ( 1  <_  M  <->  1  <  ( M  + 
1 ) ) )
180178, 2, 179sylancr 408 . . . . . . . . . 10  |-  ( ph  ->  ( 1  <_  M  <->  1  <  ( M  + 
1 ) ) )
181177, 180mpbid 146 . . . . . . . . 9  |-  ( ph  ->  1  <  ( M  +  1 ) )
18214nn0ge0d 8987 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( M  +  1 ) )
18315, 182absidd 10890 . . . . . . . . 9  |-  ( ph  ->  ( abs `  ( M  +  1 ) )  =  ( M  +  1 ) )
184181, 183breqtrrd 3924 . . . . . . . 8  |-  ( ph  ->  1  <  ( abs `  ( M  +  1 ) ) )
18574adantr 272 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( 1  /  ( M  + 
1 ) )  e.  RR )
186185, 70reexpcld 10392 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  /  ( M  +  1 ) ) ^ j )  e.  RR )
187 eqid 2115 . . . . . . . . . 10  |-  ( n  e.  NN0  |->  ( ( 1  /  ( M  +  1 ) ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  ( M  + 
1 ) ) ^
n ) )
18878, 187fvmptg 5463 . . . . . . . . 9  |-  ( ( j  e.  NN0  /\  ( ( 1  / 
( M  +  1 ) ) ^ j
)  e.  RR )  ->  ( ( n  e.  NN0  |->  ( ( 1  /  ( M  +  1 ) ) ^ n ) ) `
 j )  =  ( ( 1  / 
( M  +  1 ) ) ^ j
) )
18970, 186, 188syl2anc 406 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( 1  /  ( M  +  1 ) ) ^ n ) ) `
 j )  =  ( ( 1  / 
( M  +  1 ) ) ^ j
) )
190120, 184, 189georeclim 11233 . . . . . . 7  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( ( 1  /  ( M  + 
1 ) ) ^
n ) ) )  ~~>  ( ( M  + 
1 )  /  (
( M  +  1 )  -  1 ) ) )
19176recnd 7758 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
1  /  ( M  +  1 ) ) ^ j )  e.  CC )
192189, 191eqeltrd 2192 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( ( 1  /  ( M  +  1 ) ) ^ n ) ) `
 j )  e.  CC )
193189oveq2d 5756 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( n  e. 
NN0  |->  ( ( 1  /  ( M  + 
1 ) ) ^
n ) ) `  j ) )  =  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ j ) ) )
19482, 193eqtr4d 2151 . . . . . . 7  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( H `  j )  =  ( ( ( ( abs `  A ) ^ M
)  /  ( ! `
 M ) )  x.  ( ( n  e.  NN0  |->  ( ( 1  /  ( M  +  1 ) ) ^ n ) ) `
 j ) ) )
19552, 53, 128, 190, 192, 194isermulc2 11060 . . . . . 6  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( ( ( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( M  + 
1 )  /  (
( M  +  1 )  -  1 ) ) ) )
196 ax-1cn 7677 . . . . . . . . . . 11  |-  1  e.  CC
197 pncan 7932 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  + 
1 )  -  1 )  =  M )
19854, 196, 197sylancl 407 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 )  -  1 )  =  M )
199198oveq2d 5756 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 )  /  (
( M  +  1 )  -  1 ) )  =  ( ( M  +  1 )  /  M ) )
200199oveq2d 5756 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( M  +  1 )  /  ( ( M  +  1 )  -  1 ) ) )  =  ( ( ( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( M  + 
1 )  /  M
) ) )
20115, 2nndivred 8730 . . . . . . . . . 10  |-  ( ph  ->  ( ( M  + 
1 )  /  M
)  e.  RR )
202201recnd 7758 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 )  /  M
)  e.  CC )
20316nnap0d 8726 . . . . . . . . 9  |-  ( ph  ->  ( ! `  M
) #  0 )
204115, 202, 133, 203div23apd 8551 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( abs `  A ) ^ M )  x.  ( ( M  + 
1 )  /  M
) )  /  ( ! `  M )
)  =  ( ( ( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( M  + 
1 )  /  M
) ) )
205200, 204eqtr4d 2151 . . . . . . 7  |-  ( ph  ->  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( M  +  1 )  /  ( ( M  +  1 )  -  1 ) ) )  =  ( ( ( ( abs `  A
) ^ M )  x.  ( ( M  +  1 )  /  M ) )  / 
( ! `  M
) ) )
206115, 202, 133, 203divassapd 8549 . . . . . . 7  |-  ( ph  ->  ( ( ( ( abs `  A ) ^ M )  x.  ( ( M  + 
1 )  /  M
) )  /  ( ! `  M )
)  =  ( ( ( abs `  A
) ^ M )  x.  ( ( ( M  +  1 )  /  M )  / 
( ! `  M
) ) ) )
2072nnap0d 8726 . . . . . . . . . 10  |-  ( ph  ->  M #  0 )
208120, 54, 133, 207, 203divdivap1d 8545 . . . . . . . . 9  |-  ( ph  ->  ( ( ( M  +  1 )  /  M )  /  ( ! `  M )
)  =  ( ( M  +  1 )  /  ( M  x.  ( ! `  M ) ) ) )
20954, 133mulcomd 7751 . . . . . . . . . 10  |-  ( ph  ->  ( M  x.  ( ! `  M )
)  =  ( ( ! `  M )  x.  M ) )
210209oveq2d 5756 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 )  /  ( M  x.  ( ! `  M ) ) )  =  ( ( M  +  1 )  / 
( ( ! `  M )  x.  M
) ) )
211208, 210eqtrd 2148 . . . . . . . 8  |-  ( ph  ->  ( ( ( M  +  1 )  /  M )  /  ( ! `  M )
)  =  ( ( M  +  1 )  /  ( ( ! `
 M )  x.  M ) ) )
212211oveq2d 5756 . . . . . . 7  |-  ( ph  ->  ( ( ( abs `  A ) ^ M
)  x.  ( ( ( M  +  1 )  /  M )  /  ( ! `  M ) ) )  =  ( ( ( abs `  A ) ^ M )  x.  ( ( M  + 
1 )  /  (
( ! `  M
)  x.  M ) ) ) )
213205, 206, 2123eqtrd 2152 . . . . . 6  |-  ( ph  ->  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( M  +  1 )  /  ( ( M  +  1 )  -  1 ) ) )  =  ( ( ( abs `  A
) ^ M )  x.  ( ( M  +  1 )  / 
( ( ! `  M )  x.  M
) ) ) )
214195, 213breqtrd 3922 . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( ( ( abs `  A
) ^ M )  x.  ( ( M  +  1 )  / 
( ( ! `  M )  x.  M
) ) ) )
215 breldmg 4713 . . . . 5  |-  ( (  seq 0 (  +  ,  H )  e. 
_V  /\  ( (
( abs `  A
) ^ M )  x.  ( ( M  +  1 )  / 
( ( ! `  M )  x.  M
) ) )  e.  RR  /\  seq 0
(  +  ,  H
)  ~~>  ( ( ( abs `  A ) ^ M )  x.  ( ( M  + 
1 )  /  (
( ! `  M
)  x.  M ) ) ) )  ->  seq 0 (  +  ,  H )  e.  dom  ~~>  )
216176, 19, 214, 215syl3anc 1199 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  H )  e. 
dom 
~~>  )
21752, 53, 60, 69, 82, 77, 146, 174, 216isumle 11215 . . 3  |-  ( ph  -> 
sum_ j  e.  NN0  ( G `  ( M  +  j ) )  <_  sum_ j  e.  NN0  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ j ) ) )
218 eqid 2115 . . . . 5  |-  ( ZZ>= `  ( 0  +  M
) )  =  (
ZZ>= `  ( 0  +  M ) )
219 fveq2 5387 . . . . 5  |-  ( k  =  ( M  +  j )  ->  ( G `  k )  =  ( G `  ( M  +  j
) ) )
22054addid2d 7876 . . . . . . . . 9  |-  ( ph  ->  ( 0  +  M
)  =  M )
221220fveq2d 5391 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  ( 0  +  M ) )  =  ( ZZ>= `  M )
)
222221eleq2d 2185 . . . . . . 7  |-  ( ph  ->  ( k  e.  (
ZZ>= `  ( 0  +  M ) )  <->  k  e.  ( ZZ>= `  M )
) )
223222biimpa 292 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( 0  +  M ) ) )  ->  k  e.  (
ZZ>= `  M ) )
224223, 42syldan 278 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  ( 0  +  M ) ) )  ->  ( G `  k )  e.  CC )
22552, 218, 219, 21, 53, 224isumshft 11210 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( 0  +  M ) ) ( G `  k )  =  sum_ j  e.  NN0  ( G `  ( M  +  j ) ) )
226221sumeq1d 11086 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  ( 0  +  M ) ) ( G `  k )  =  sum_ k  e.  (
ZZ>= `  M ) ( G `  k ) )
227225, 226eqtr3d 2150 . . 3  |-  ( ph  -> 
sum_ j  e.  NN0  ( G `  ( M  +  j ) )  =  sum_ k  e.  (
ZZ>= `  M ) ( G `  k ) )
22877recnd 7758 . . . 4  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( (
( ( abs `  A
) ^ M )  /  ( ! `  M ) )  x.  ( ( 1  / 
( M  +  1 ) ) ^ j
) )  e.  CC )
22952, 53, 82, 228, 214isumclim 11141 . . 3  |-  ( ph  -> 
sum_ j  e.  NN0  ( ( ( ( abs `  A ) ^ M )  / 
( ! `  M
) )  x.  (
( 1  /  ( M  +  1 ) ) ^ j ) )  =  ( ( ( abs `  A
) ^ M )  x.  ( ( M  +  1 )  / 
( ( ! `  M )  x.  M
) ) ) )
230217, 227, 2293brtr3d 3927 . 2  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  M ) ( G `  k )  <_  ( ( ( abs `  A ) ^ M )  x.  ( ( M  + 
1 )  /  (
( ! `  M
)  x.  M ) ) ) )
2317, 11, 19, 51, 230letrd 7850 1  |-  ( ph  ->  ( abs `  sum_ k  e.  ( ZZ>= `  M ) ( F `
 k ) )  <_  ( ( ( abs `  A ) ^ M )  x.  ( ( M  + 
1 )  /  (
( ! `  M
)  x.  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463   _Vcvv 2658   class class class wbr 3897    |-> cmpt 3957   dom cdm 4507   ` cfv 5091  (class class class)co 5740   CCcc 7582   RRcr 7583   0cc0 7584   1c1 7585    + caddc 7587    x. cmul 7589    < clt 7764    <_ cle 7765    - cmin 7897   -ucneg 7898    / cdiv 8395   NNcn 8680   NN0cn0 8931   ZZcz 9008   ZZ>=cuz 9278    seqcseq 10169   ^cexp 10243   !cfa 10422    shift cshi 10537   abscabs 10720    ~~> cli 10998   sum_csu 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-isom 5100  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-irdg 6233  df-frec 6254  df-1o 6279  df-oadd 6283  df-er 6395  df-en 6601  df-dom 6602  df-fin 6603  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8396  df-inn 8681  df-2 8739  df-3 8740  df-4 8741  df-n0 8932  df-z 9009  df-uz 9279  df-q 9364  df-rp 9394  df-ico 9628  df-fz 9742  df-fzo 9871  df-seqfrec 10170  df-exp 10244  df-fac 10423  df-ihash 10473  df-shft 10538  df-cj 10565  df-re 10566  df-im 10567  df-rsqrt 10721  df-abs 10722  df-clim 10999  df-sumdc 11074
This theorem is referenced by:  ef01bndlem  11373  eirraplem  11390  dveflem  12761
  Copyright terms: Public domain W3C validator