ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertensabs Unicode version

Theorem mertensabs 11338
Description: Mertens' theorem. If  A (
j ) is an absolutely convergent series and  B ( k ) is convergent, then  ( sum_ j  e.  NN0 A ( j )  x.  sum_ k  e.  NN0 B ( k ) )  =  sum_ k  e. 
NN0 sum_ j  e.  ( 0 ... k ) ( A ( j )  x.  B ( k  -  j ) ) (and this latter series is convergent). This latter sum is commonly known as the Cauchy product of the sequences. The proof follows the outline at http://en.wikipedia.org/wiki/Cauchy_product#Proof_of_Mertens.27_theorem. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 8-Dec-2022.)
Hypotheses
Ref Expression
mertens.1  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
mertens.2  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
mertens.3  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
mertens.4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertens.5  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertens.6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
mertens.7  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
mertens.8  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertens.f  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
Assertion
Ref Expression
mertensabs  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B
) )
Distinct variable groups:    B, j    j,
k, G    ph, j, k    A, k    j, K, k   
j, F    k, H
Allowed substitution hints:    A( j)    B( k)    F( k)    H( j)

Proof of Theorem mertensabs
Dummy variables  m  n  s  x  y  z  i  l  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 9384 . 2  |-  NN0  =  ( ZZ>= `  0 )
2 0zd 9090 . 2  |-  ( ph  ->  0  e.  ZZ )
3 seqex 10251 . . 3  |-  seq 0
(  +  ,  H
)  e.  _V
43a1i 9 . 2  |-  ( ph  ->  seq 0 (  +  ,  H )  e. 
_V )
5 mertens.6 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
6 0zd 9090 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  0  e.  ZZ )
7 nn0z 9098 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  ZZ )
87adantl 275 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN0 )  ->  k  e.  ZZ )
96, 8fzfigd 10235 . . . . . 6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( 0 ... k )  e. 
Fin )
10 simpl 108 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN0 )  ->  ph )
11 elfznn0 9925 . . . . . . . 8  |-  ( j  e.  ( 0 ... k )  ->  j  e.  NN0 )
12 mertens.3 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
1310, 11, 12syl2an 287 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  A  e.  CC )
14 fveq2 5429 . . . . . . . . 9  |-  ( i  =  ( k  -  j )  ->  ( G `  i )  =  ( G `  ( k  -  j
) ) )
1514eleq1d 2209 . . . . . . . 8  |-  ( i  =  ( k  -  j )  ->  (
( G `  i
)  e.  CC  <->  ( G `  ( k  -  j
) )  e.  CC ) )
16 mertens.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
17 mertens.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
1816, 17eqeltrd 2217 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
1918ralrimiva 2508 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  NN0  ( G `  k )  e.  CC )
20 fveq2 5429 . . . . . . . . . . . 12  |-  ( k  =  i  ->  ( G `  k )  =  ( G `  i ) )
2120eleq1d 2209 . . . . . . . . . . 11  |-  ( k  =  i  ->  (
( G `  k
)  e.  CC  <->  ( G `  i )  e.  CC ) )
2221cbvralv 2657 . . . . . . . . . 10  |-  ( A. k  e.  NN0  ( G `
 k )  e.  CC  <->  A. i  e.  NN0  ( G `  i )  e.  CC )
2319, 22sylib 121 . . . . . . . . 9  |-  ( ph  ->  A. i  e.  NN0  ( G `  i )  e.  CC )
2423ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  A. i  e.  NN0  ( G `  i )  e.  CC )
25 fznn0sub 9868 . . . . . . . . 9  |-  ( j  e.  ( 0 ... k )  ->  (
k  -  j )  e.  NN0 )
2625adantl 275 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  (
k  -  j )  e.  NN0 )
2715, 24, 26rspcdva 2798 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( G `  ( k  -  j ) )  e.  CC )
2813, 27mulcld 7810 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  j  e.  ( 0 ... k
) )  ->  ( A  x.  ( G `  ( k  -  j
) ) )  e.  CC )
299, 28fsumcl 11201 . . . . 5  |-  ( (
ph  /\  k  e.  NN0 )  ->  sum_ j  e.  ( 0 ... k
) ( A  x.  ( G `  ( k  -  j ) ) )  e.  CC )
305, 29eqeltrd 2217 . . . 4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  e.  CC )
311, 2, 30serf 10278 . . 3  |-  ( ph  ->  seq 0 (  +  ,  H ) : NN0 --> CC )
3231ffvelrnda 5563 . 2  |-  ( (
ph  /\  m  e.  NN0 )  ->  (  seq 0 (  +  ,  H ) `  m
)  e.  CC )
33 mertens.1 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
3433adantlr 469 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
35 mertens.2 . . . . . 6  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
3635adantlr 469 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A
) )
3712adantlr 469 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN0 )  ->  A  e.  CC )
3816adantlr 469 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
3917adantlr 469 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  NN0 )  ->  B  e.  CC )
405adantlr 469 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `  ( k  -  j ) ) ) )
41 mertens.7 . . . . . 6  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
4241adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  seq 0
(  +  ,  K
)  e.  dom  ~~>  )
43 mertens.8 . . . . . 6  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
4443adantr 274 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  seq 0
(  +  ,  G
)  e.  dom  ~~>  )
45 simpr 109 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
46 fveq2 5429 . . . . . . . . . . . 12  |-  ( l  =  k  ->  ( G `  l )  =  ( G `  k ) )
4746cbvsumv 11162 . . . . . . . . . . 11  |-  sum_ l  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `  l
)  =  sum_ k  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `  k
)
48 fvoveq1 5805 . . . . . . . . . . . 12  |-  ( i  =  n  ->  ( ZZ>=
`  ( i  +  1 ) )  =  ( ZZ>= `  ( n  +  1 ) ) )
4948sumeq1d 11167 . . . . . . . . . . 11  |-  ( i  =  n  ->  sum_ k  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
5047, 49syl5eq 2185 . . . . . . . . . 10  |-  ( i  =  n  ->  sum_ l  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `  l
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
5150fveq2d 5433 . . . . . . . . 9  |-  ( i  =  n  ->  ( abs `  sum_ l  e.  (
ZZ>= `  ( i  +  1 ) ) ( G `  l ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
5251eqeq2d 2152 . . . . . . . 8  |-  ( i  =  n  ->  (
u  =  ( abs `  sum_ l  e.  (
ZZ>= `  ( i  +  1 ) ) ( G `  l ) )  <->  u  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) ) )
5352cbvrexv 2658 . . . . . . 7  |-  ( E. i  e.  ( 0 ... ( s  - 
1 ) ) u  =  ( abs `  sum_ l  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `
 l ) )  <->  E. n  e.  (
0 ... ( s  - 
1 ) ) u  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
54 eqeq1 2147 . . . . . . . 8  |-  ( u  =  z  ->  (
u  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <->  z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) ) )
5554rexbidv 2439 . . . . . . 7  |-  ( u  =  z  ->  ( E. n  e.  (
0 ... ( s  - 
1 ) ) u  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <->  E. n  e.  (
0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
5653, 55syl5bb 191 . . . . . 6  |-  ( u  =  z  ->  ( E. i  e.  (
0 ... ( s  - 
1 ) ) u  =  ( abs `  sum_ l  e.  ( ZZ>= `  ( i  +  1 ) ) ( G `
 l ) )  <->  E. n  e.  (
0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
5756cbvabv 2265 . . . . 5  |-  { u  |  E. i  e.  ( 0 ... ( s  -  1 ) ) u  =  ( abs `  sum_ l  e.  (
ZZ>= `  ( i  +  1 ) ) ( G `  l ) ) }  =  {
z  |  E. n  e.  ( 0 ... (
s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) }
58 fveq2 5429 . . . . . . . . . . . 12  |-  ( i  =  j  ->  ( K `  i )  =  ( K `  j ) )
5958cbvsumv 11162 . . . . . . . . . . 11  |-  sum_ i  e.  NN0  ( K `  i )  =  sum_ j  e.  NN0  ( K `
 j )
6059oveq1i 5792 . . . . . . . . . 10  |-  ( sum_ i  e.  NN0  ( K `
 i )  +  1 )  =  (
sum_ j  e.  NN0  ( K `  j )  +  1 )
6160oveq2i 5793 . . . . . . . . 9  |-  ( ( x  /  2 )  /  ( sum_ i  e.  NN0  ( K `  i )  +  1 ) )  =  ( ( x  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )
6261breq2i 3945 . . . . . . . 8  |-  ( ( abs `  sum_ i  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  i
) )  <  (
( x  /  2
)  /  ( sum_ i  e.  NN0  ( K `
 i )  +  1 ) )  <->  ( abs ` 
sum_ i  e.  (
ZZ>= `  ( u  + 
1 ) ) ( G `  i ) )  <  ( ( x  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
63 fveq2 5429 . . . . . . . . . . . 12  |-  ( i  =  k  ->  ( G `  i )  =  ( G `  k ) )
6463cbvsumv 11162 . . . . . . . . . . 11  |-  sum_ i  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  i
)  =  sum_ k  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  k
)
65 fvoveq1 5805 . . . . . . . . . . . 12  |-  ( u  =  n  ->  ( ZZ>=
`  ( u  + 
1 ) )  =  ( ZZ>= `  ( n  +  1 ) ) )
6665sumeq1d 11167 . . . . . . . . . . 11  |-  ( u  =  n  ->  sum_ k  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
6764, 66syl5eq 2185 . . . . . . . . . 10  |-  ( u  =  n  ->  sum_ i  e.  ( ZZ>= `  ( u  +  1 ) ) ( G `  i
)  =  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )
6867fveq2d 5433 . . . . . . . . 9  |-  ( u  =  n  ->  ( abs `  sum_ i  e.  (
ZZ>= `  ( u  + 
1 ) ) ( G `  i ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) ) )
6968breq1d 3947 . . . . . . . 8  |-  ( u  =  n  ->  (
( abs `  sum_ i  e.  ( ZZ>= `  ( u  +  1
) ) ( G `
 i ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7062, 69syl5bb 191 . . . . . . 7  |-  ( u  =  n  ->  (
( abs `  sum_ i  e.  ( ZZ>= `  ( u  +  1
) ) ( G `
 i ) )  <  ( ( x  /  2 )  / 
( sum_ i  e.  NN0  ( K `  i )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7170cbvralv 2657 . . . . . 6  |-  ( A. u  e.  ( ZZ>= `  s ) ( abs `  sum_ i  e.  (
ZZ>= `  ( u  + 
1 ) ) ( G `  i ) )  <  ( ( x  /  2 )  /  ( sum_ i  e.  NN0  ( K `  i )  +  1 ) )  <->  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
7271anbi2i 453 . . . . 5  |-  ( ( s  e.  NN  /\  A. u  e.  ( ZZ>= `  s ) ( abs `  sum_ i  e.  (
ZZ>= `  ( u  + 
1 ) ) ( G `  i ) )  <  ( ( x  /  2 )  /  ( sum_ i  e.  NN0  ( K `  i )  +  1 ) ) )  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( x  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
7334, 36, 37, 38, 39, 40, 42, 44, 45, 57, 72mertenslem2 11337 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
x )
74 eluznn0 9420 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  m  e.  ( ZZ>= `  y ) )  ->  m  e.  NN0 )
75 0zd 9090 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  0  e.  ZZ )
76 nn0z 9098 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN0  ->  m  e.  ZZ )
7776adantl 275 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  ZZ )
7875, 77fzfigd 10235 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( 0 ... m )  e. 
Fin )
79 simpll 519 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ph )
80 elfznn0 9925 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( 0 ... m )  ->  j  e.  NN0 )
8180adantl 275 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  j  e.  NN0 )
821, 2, 16, 17, 43isumcl 11226 . . . . . . . . . . . . . . . 16  |-  ( ph  -> 
sum_ k  e.  NN0  B  e.  CC )
8382adantr 274 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  sum_ k  e. 
NN0  B  e.  CC )
8433, 12eqeltrd 2217 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  e.  CC )
8583, 84mulcld 7810 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  e.  CC )
8679, 81, 85syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( sum_ k  e.  NN0  B  x.  ( F `  j
) )  e.  CC )
87 0zd 9090 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  0  e.  ZZ )
8877adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  m  e.  ZZ )
8981nn0zd 9195 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  j  e.  ZZ )
9088, 89zsubcld 9202 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
m  -  j )  e.  ZZ )
9187, 90fzfigd 10235 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
0 ... ( m  -  j ) )  e. 
Fin )
92 simplll 523 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  ph )
9380ad2antlr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  j  e.  NN0 )
9492, 93, 12syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  A  e.  CC )
95 elfznn0 9925 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( 0 ... ( m  -  j
) )  ->  k  e.  NN0 )
9695adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  k  e.  NN0 )
9792, 96, 18syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  ( G `  k )  e.  CC )
9894, 97mulcld 7810 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  ( A  x.  ( G `  k
) )  e.  CC )
9991, 98fsumcl 11201 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( A  x.  ( G `  k ) )  e.  CC )
10078, 86, 99fsumsub 11253 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) ( ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( A  x.  ( G `  k ) ) )  =  (
sum_ j  e.  ( 0 ... m ) ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ j  e.  ( 0 ... m ) sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `
 k ) ) ) )
10179, 81, 12syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  A  e.  CC )
10282ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  NN0  B  e.  CC )
10391, 97fsumcl 11201 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( G `  k )  e.  CC )
104101, 102, 103subdid 8200 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  ( sum_ k  e.  NN0  B  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) )  =  ( ( A  x.  sum_ k  e.  NN0  B )  -  ( A  x.  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) ) )
105 eqid 2140 . . . . . . . . . . . . . . . . . . 19  |-  ( ZZ>= `  ( ( m  -  j )  +  1 ) )  =  (
ZZ>= `  ( ( m  -  j )  +  1 ) )
106 fznn0sub 9868 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  ( 0 ... m )  ->  (
m  -  j )  e.  NN0 )
107106adantl 275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
m  -  j )  e.  NN0 )
108 peano2nn0 9041 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  -  j )  e.  NN0  ->  ( ( m  -  j )  +  1 )  e. 
NN0 )
109107, 108syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  NN0 )
11079, 16sylan 281 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
11179, 17sylan 281 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  NN0 )  ->  B  e.  CC )
11243ad2antrr 480 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
1131, 105, 109, 110, 111, 112isumsplit 11292 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  NN0  B  =  (
sum_ k  e.  ( 0 ... ( ( ( m  -  j
)  +  1 )  -  1 ) ) B  +  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )
114107nn0cnd 9056 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
m  -  j )  e.  CC )
115 ax-1cn 7737 . . . . . . . . . . . . . . . . . . . . . . 23  |-  1  e.  CC
116 pncan 7992 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( m  -  j
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( m  -  j )  +  1 )  -  1 )  =  ( m  -  j ) )
117114, 115, 116sylancl 410 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( ( m  -  j )  +  1 )  -  1 )  =  ( m  -  j ) )
118117oveq2d 5798 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
0 ... ( ( ( m  -  j )  +  1 )  - 
1 ) )  =  ( 0 ... (
m  -  j ) ) )
119118sumeq1d 11167 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
( ( m  -  j )  +  1 )  -  1 ) ) B  =  sum_ k  e.  ( 0 ... ( m  -  j ) ) B )
12092, 96, 16syl2anc 409 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  ( 0 ... ( m  -  j ) ) )  ->  ( G `  k )  =  B )
121120sumeq2dv 11169 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( G `  k )  =  sum_ k  e.  ( 0 ... ( m  -  j ) ) B )
122119, 121eqtr4d 2176 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( 0 ... (
( ( m  -  j )  +  1 )  -  1 ) ) B  =  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) )
123122oveq1d 5797 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( sum_ k  e.  ( 0 ... ( ( ( m  -  j )  +  1 )  - 
1 ) ) B  +  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k )  +  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
124113, 123eqtrd 2173 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  NN0  B  =  (
sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
)  +  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )
125124oveq1d 5797 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( sum_ k  e.  NN0  B  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
) )  =  ( ( sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
)  +  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) )
126109nn0zd 9195 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  ZZ )
127 simplll 523 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ph )
128 eluznn0 9420 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( m  -  j )  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) )  -> 
k  e.  NN0 )
129109, 128sylan 281 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  k  e.  NN0 )
130127, 129, 16syl2anc 409 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ( G `  k )  =  B )
131127, 129, 17syl2anc 409 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  B  e.  CC )
132110, 111eqeltrd 2217 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
1331, 109, 132iserex 11140 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  ) )
134112, 133mpbid 146 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  seq ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  )
135105, 126, 130, 131, 134isumcl 11226 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  e.  CC )
136103, 135pncan2d 8099 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
)  +  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) )  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )
137125, 136eqtrd 2173 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( sum_ k  e.  NN0  B  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k
) )  =  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )
138137oveq2d 5798 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  ( sum_ k  e.  NN0  B  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) )  =  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )
13912, 83mulcomd 7811 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A  x.  sum_ k  e.  NN0  B )  =  ( sum_ k  e.  NN0  B  x.  A ) )
14033oveq2d 5798 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  =  ( sum_ k  e.  NN0  B  x.  A ) )
141139, 140eqtr4d 2176 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( A  x.  sum_ k  e.  NN0  B )  =  ( sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
14279, 81, 141syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  sum_ k  e. 
NN0  B )  =  ( sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
14391, 101, 97fsummulc2 11249 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( G `  k ) )  = 
sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `  k )
) )
144142, 143oveq12d 5800 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( A  x.  sum_ k  e.  NN0  B )  -  ( A  x.  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( G `  k ) ) )  =  ( ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `
 k ) ) ) )
145104, 138, 1443eqtr3rd 2182 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( 0 ... m
) )  ->  (
( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `
 k ) ) )  =  ( A  x.  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
146145sumeq2dv 11169 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) ( ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ k  e.  ( 0 ... (
m  -  j ) ) ( A  x.  ( G `  k ) ) )  =  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )
147 elnn0uz 9387 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN0  <->  j  e.  (
ZZ>= `  0 ) )
148147biimpri 132 . . . . . . . . . . . . . . 15  |-  ( j  e.  ( ZZ>= `  0
)  ->  j  e.  NN0 )
14982ad2antrr 480 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( ZZ>= `  0 )
)  ->  sum_ k  e. 
NN0  B  e.  CC )
150148, 84sylan2 284 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  ( ZZ>= `  0 )
)  ->  ( F `  j )  e.  CC )
151150adantlr 469 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( ZZ>= `  0 )
)  ->  ( F `  j )  e.  CC )
152149, 151mulcld 7810 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( ZZ>= `  0 )
)  ->  ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  e.  CC )
153 fveq2 5429 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  ( F `  n )  =  ( F `  j ) )
154153oveq2d 5798 . . . . . . . . . . . . . . . 16  |-  ( n  =  j  ->  ( sum_ k  e.  NN0  B  x.  ( F `  n
) )  =  (
sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
155 eqid 2140 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) )  =  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) )
156154, 155fvmptg 5505 . . . . . . . . . . . . . . 15  |-  ( ( j  e.  NN0  /\  ( sum_ k  e.  NN0  B  x.  ( F `  j ) )  e.  CC )  ->  (
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) `
 j )  =  ( sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
157148, 152, 156syl2an2 584 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  j  e.  ( ZZ>= `  0 )
)  ->  ( (
n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) `  j
)  =  ( sum_ k  e.  NN0  B  x.  ( F `  j ) ) )
158 simpr 109 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  NN0 )
159158, 1eleqtrdi 2233 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  m  e.  ( ZZ>= `  0 )
)
160157, 159, 152fsum3ser 11198 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) ( sum_ k  e.  NN0  B  x.  ( F `  j )
)  =  (  seq 0 (  +  , 
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m ) )
161 fveq2 5429 . . . . . . . . . . . . . . . 16  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
162161oveq2d 5798 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( A  x.  ( G `  n ) )  =  ( A  x.  ( G `  k )
) )
163 fveq2 5429 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( k  -  j )  ->  ( G `  n )  =  ( G `  ( k  -  j
) ) )
164163oveq2d 5798 . . . . . . . . . . . . . . 15  |-  ( n  =  ( k  -  j )  ->  ( A  x.  ( G `  n ) )  =  ( A  x.  ( G `  ( k  -  j ) ) ) )
16598anasss 397 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  (
j  e.  ( 0 ... m )  /\  k  e.  ( 0 ... ( m  -  j ) ) ) )  ->  ( A  x.  ( G `  k
) )  e.  CC )
166162, 164, 165, 77fisum0diag2 11248 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `  k )
)  =  sum_ k  e.  ( 0 ... m
) sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `  ( k  -  j ) ) ) )
167 simpll 519 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ph )
168 elnn0uz 9387 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  NN0  <->  k  e.  (
ZZ>= `  0 ) )
169168biimpri 132 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( ZZ>= `  0
)  ->  k  e.  NN0 )
170169adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  k  e.  NN0 )
171167, 170, 5syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
172167, 170, 29syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  NN0 )  /\  k  e.  ( ZZ>= `  0 )
)  ->  sum_ j  e.  ( 0 ... k
) ( A  x.  ( G `  ( k  -  j ) ) )  e.  CC )
173171, 159, 172fsum3ser 11198 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ k  e.  ( 0 ... m
) sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `  ( k  -  j ) ) )  =  (  seq 0 (  +  ,  H ) `  m
) )
174166, 173eqtrd 2173 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ j  e.  ( 0 ... m
) sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `  k )
)  =  (  seq 0 (  +  ,  H ) `  m
) )
175160, 174oveq12d 5800 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( sum_ j  e.  ( 0 ... m ) (
sum_ k  e.  NN0  B  x.  ( F `  j ) )  -  sum_ j  e.  ( 0 ... m ) sum_ k  e.  ( 0 ... ( m  -  j ) ) ( A  x.  ( G `
 k ) ) )  =  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) ) `  m )  -  (  seq 0 (  +  ,  H ) `  m
) ) )
176100, 146, 1753eqtr3rd 2182 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (  seq 0 (  +  , 
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq 0
(  +  ,  H
) `  m )
)  =  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
177176fveq2d 5433 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( abs `  ( (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq 0 (  +  ,  H ) `  m
) ) )  =  ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) ) )
178177breq1d 3947 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( ( abs `  ( (  seq 0 (  +  , 
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq 0
(  +  ,  H
) `  m )
) )  <  x  <->  ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
17974, 178sylan2 284 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  NN0  /\  m  e.  ( ZZ>= `  y )
) )  ->  (
( abs `  (
(  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) ) `  m )  -  (  seq 0 (  +  ,  H ) `  m
) ) )  < 
x  <->  ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
x ) )
180179anassrs 398 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  NN0 )  /\  m  e.  ( ZZ>= `  y )
)  ->  ( ( abs `  ( (  seq 0 (  +  , 
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq 0
(  +  ,  H
) `  m )
) )  <  x  <->  ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
181180ralbidva 2434 . . . . . 6  |-  ( (
ph  /\  y  e.  NN0 )  ->  ( A. m  e.  ( ZZ>= `  y ) ( abs `  ( (  seq 0
(  +  ,  ( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) ) `  m )  -  (  seq 0 (  +  ,  H ) `  m
) ) )  < 
x  <->  A. m  e.  (
ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
182181rexbidva 2435 . . . . 5  |-  ( ph  ->  ( E. y  e. 
NN0  A. m  e.  (
ZZ>= `  y ) ( abs `  ( (  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) ) `  m )  -  (  seq 0 (  +  ,  H ) `  m
) ) )  < 
x  <->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
183182adantr 274 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  (
(  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) ) `  m )  -  (  seq 0 (  +  ,  H ) `  m
) ) )  < 
x  <->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  x ) )
18473, 183mpbird 166 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  (
(  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) ) `  m )  -  (  seq 0 (  +  ,  H ) `  m
) ) )  < 
x )
185184ralrimiva 2508 . 2  |-  ( ph  ->  A. x  e.  RR+  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y )
( abs `  (
(  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) ) `  m )  -  (  seq 0 (  +  ,  H ) `  m
) ) )  < 
x )
186 mertens.f . . . . 5  |-  ( ph  ->  seq 0 (  +  ,  F )  e. 
dom 
~~>  )
1871, 2, 33, 12, 186isumclim2 11223 . . . 4  |-  ( ph  ->  seq 0 (  +  ,  F )  ~~>  sum_ j  e.  NN0  A )
18884ralrimiva 2508 . . . . 5  |-  ( ph  ->  A. j  e.  NN0  ( F `  j )  e.  CC )
189 fveq2 5429 . . . . . . 7  |-  ( j  =  m  ->  ( F `  j )  =  ( F `  m ) )
190189eleq1d 2209 . . . . . 6  |-  ( j  =  m  ->  (
( F `  j
)  e.  CC  <->  ( F `  m )  e.  CC ) )
191190rspccva 2792 . . . . 5  |-  ( ( A. j  e.  NN0  ( F `  j )  e.  CC  /\  m  e.  NN0 )  ->  ( F `  m )  e.  CC )
192188, 191sylan 281 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( F `  m )  e.  CC )
19382adantr 274 . . . . . 6  |-  ( (
ph  /\  m  e.  NN0 )  ->  sum_ k  e. 
NN0  B  e.  CC )
194193, 192mulcld 7810 . . . . 5  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( sum_ k  e.  NN0  B  x.  ( F `  m ) )  e.  CC )
195 fveq2 5429 . . . . . . 7  |-  ( n  =  m  ->  ( F `  n )  =  ( F `  m ) )
196195oveq2d 5798 . . . . . 6  |-  ( n  =  m  ->  ( sum_ k  e.  NN0  B  x.  ( F `  n
) )  =  (
sum_ k  e.  NN0  B  x.  ( F `  m ) ) )
197196, 155fvmptg 5505 . . . . 5  |-  ( ( m  e.  NN0  /\  ( sum_ k  e.  NN0  B  x.  ( F `  m ) )  e.  CC )  ->  (
( n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) `
 m )  =  ( sum_ k  e.  NN0  B  x.  ( F `  m ) ) )
198158, 194, 197syl2anc 409 . . . 4  |-  ( (
ph  /\  m  e.  NN0 )  ->  ( (
n  e.  NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n ) ) ) `  m
)  =  ( sum_ k  e.  NN0  B  x.  ( F `  m ) ) )
1991, 2, 82, 187, 192, 198isermulc2 11141 . . 3  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) )  ~~>  ( sum_ k  e.  NN0  B  x.  sum_ j  e.  NN0  A
) )
2001, 2, 33, 12, 186isumcl 11226 . . . 4  |-  ( ph  -> 
sum_ j  e.  NN0  A  e.  CC )
20182, 200mulcomd 7811 . . 3  |-  ( ph  ->  ( sum_ k  e.  NN0  B  x.  sum_ j  e.  NN0  A )  =  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B
) )
202199, 201breqtrd 3962 . 2  |-  ( ph  ->  seq 0 (  +  ,  ( n  e. 
NN0  |->  ( sum_ k  e.  NN0  B  x.  ( F `  n )
) ) )  ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B
) )
2031, 2, 4, 32, 185, 2022clim 11102 1  |-  ( ph  ->  seq 0 (  +  ,  H )  ~~>  ( sum_ j  e.  NN0  A  x.  sum_ k  e.  NN0  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418   _Vcvv 2689   class class class wbr 3937    |-> cmpt 3997   dom cdm 4547   ` cfv 5131  (class class class)co 5782   CCcc 7642   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    - cmin 7957    / cdiv 8456   NNcn 8744   2c2 8795   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   RR+crp 9470   ...cfz 9821    seqcseq 10249   abscabs 10801    ~~> cli 11079   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-disj 3915  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  efaddlem  11417
  Copyright terms: Public domain W3C validator