ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapmul1 Unicode version

Theorem reapmul1 8742
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8935. (Contributed by Jim Kingdon, 8-Feb-2020.)
Assertion
Ref Expression
reapmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )

Proof of Theorem reapmul1
StepHypRef Expression
1 0re 8146 . . . . 5  |-  0  e.  RR
2 reaplt 8735 . . . . 5  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  ( C #  0  <->  ( C  <  0  \/  0  <  C ) ) )
31, 2mpan2 425 . . . 4  |-  ( C  e.  RR  ->  ( C #  0  <->  ( C  <  0  \/  0  < 
C ) ) )
43pm5.32i 454 . . 3  |-  ( ( C  e.  RR  /\  C #  0 )  <->  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )
5 simp1 1021 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  RR )
65recnd 8175 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  CC )
7 simp3l 1049 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  RR )
87recnd 8175 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  CC )
96, 8mulneg2d 8558 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  -u C
)  =  -u ( A  x.  C )
)
10 simp2 1022 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  RR )
1110recnd 8175 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  CC )
1211, 8mulneg2d 8558 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  -u C
)  =  -u ( B  x.  C )
)
139, 12breq12d 4096 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  -u C ) #  ( B  x.  -u C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
147renegcld 8526 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u C  e.  RR )
15 simp3r 1050 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  <  0 )
167lt0neg1d 8662 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( C  <  0  <->  0  <  -u C ) )
1715, 16mpbid 147 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
0  <  -u C )
18 reapmul1lem 8741 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( -u C  e.  RR  /\  0  <  -u C ) )  ->  ( A #  B  <->  ( A  x.  -u C
) #  ( B  x.  -u C ) ) )
195, 10, 14, 17, 18syl112anc 1275 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  -u C ) #  ( B  x.  -u C
) ) )
205, 7remulcld 8177 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  C
)  e.  RR )
2110, 7remulcld 8177 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  C
)  e.  RR )
2220, 21ltnegd 8670 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  <->  -u ( B  x.  C
)  <  -u ( A  x.  C ) ) )
2321, 20ltnegd 8670 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( B  x.  C )  <  ( A  x.  C )  <->  -u ( A  x.  C
)  <  -u ( B  x.  C ) ) )
2422, 23orbi12d 798 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( ( A  x.  C )  < 
( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
25 reaplt 8735 . . . . . . . . . 10  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  <-> 
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) ) ) )
2620, 21, 25syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  ( ( A  x.  C )  <  ( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) ) ) )
2720renegcld 8526 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( A  x.  C
)  e.  RR )
2821renegcld 8526 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( B  x.  C
)  e.  RR )
29 reaplt 8735 . . . . . . . . . . 11  |-  ( (
-u ( A  x.  C )  e.  RR  /\  -u ( B  x.  C
)  e.  RR )  ->  ( -u ( A  x.  C ) #  -u ( B  x.  C
)  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
3027, 28, 29syl2anc 411 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
31 orcom 733 . . . . . . . . . 10  |-  ( (
-u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C )
)  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) )
3230, 31bitrdi 196 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
3324, 26, 323bitr4d 220 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
3413, 19, 333bitr4d 220 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
35343expa 1227 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3635anassrs 400 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  C  <  0 )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
37 reapmul1lem 8741 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
38373expa 1227 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3938anassrs 400 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  0  <  C )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
4036, 39jaodan 802 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  ( C  <  0  \/  0  <  C ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C
) ) )
4140anasss 399 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )  ->  ( A #  B 
<->  ( A  x.  C
) #  ( B  x.  C ) ) )
424, 41sylan2b 287 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C #  0 ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
43423impa 1218 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   0cc0 7999    x. cmul 8004    < clt 8181   -ucneg 8318   # cap 8728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator