ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapmul1 Unicode version

Theorem reapmul1 8555
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8748. (Contributed by Jim Kingdon, 8-Feb-2020.)
Assertion
Ref Expression
reapmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )

Proof of Theorem reapmul1
StepHypRef Expression
1 0re 7960 . . . . 5  |-  0  e.  RR
2 reaplt 8548 . . . . 5  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  ( C #  0  <->  ( C  <  0  \/  0  <  C ) ) )
31, 2mpan2 425 . . . 4  |-  ( C  e.  RR  ->  ( C #  0  <->  ( C  <  0  \/  0  < 
C ) ) )
43pm5.32i 454 . . 3  |-  ( ( C  e.  RR  /\  C #  0 )  <->  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )
5 simp1 997 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  RR )
65recnd 7989 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  CC )
7 simp3l 1025 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  RR )
87recnd 7989 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  CC )
96, 8mulneg2d 8372 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  -u C
)  =  -u ( A  x.  C )
)
10 simp2 998 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  RR )
1110recnd 7989 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  CC )
1211, 8mulneg2d 8372 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  -u C
)  =  -u ( B  x.  C )
)
139, 12breq12d 4018 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  -u C ) #  ( B  x.  -u C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
147renegcld 8340 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u C  e.  RR )
15 simp3r 1026 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  <  0 )
167lt0neg1d 8475 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( C  <  0  <->  0  <  -u C ) )
1715, 16mpbid 147 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
0  <  -u C )
18 reapmul1lem 8554 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( -u C  e.  RR  /\  0  <  -u C ) )  ->  ( A #  B  <->  ( A  x.  -u C
) #  ( B  x.  -u C ) ) )
195, 10, 14, 17, 18syl112anc 1242 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  -u C ) #  ( B  x.  -u C
) ) )
205, 7remulcld 7991 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  C
)  e.  RR )
2110, 7remulcld 7991 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  C
)  e.  RR )
2220, 21ltnegd 8483 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  <->  -u ( B  x.  C
)  <  -u ( A  x.  C ) ) )
2321, 20ltnegd 8483 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( B  x.  C )  <  ( A  x.  C )  <->  -u ( A  x.  C
)  <  -u ( B  x.  C ) ) )
2422, 23orbi12d 793 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( ( A  x.  C )  < 
( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
25 reaplt 8548 . . . . . . . . . 10  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  <-> 
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) ) ) )
2620, 21, 25syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  ( ( A  x.  C )  <  ( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) ) ) )
2720renegcld 8340 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( A  x.  C
)  e.  RR )
2821renegcld 8340 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( B  x.  C
)  e.  RR )
29 reaplt 8548 . . . . . . . . . . 11  |-  ( (
-u ( A  x.  C )  e.  RR  /\  -u ( B  x.  C
)  e.  RR )  ->  ( -u ( A  x.  C ) #  -u ( B  x.  C
)  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
3027, 28, 29syl2anc 411 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
31 orcom 728 . . . . . . . . . 10  |-  ( (
-u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C )
)  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) )
3230, 31bitrdi 196 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
3324, 26, 323bitr4d 220 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
3413, 19, 333bitr4d 220 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
35343expa 1203 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3635anassrs 400 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  C  <  0 )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
37 reapmul1lem 8554 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
38373expa 1203 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3938anassrs 400 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  0  <  C )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
4036, 39jaodan 797 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  ( C  <  0  \/  0  <  C ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C
) ) )
4140anasss 399 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )  ->  ( A #  B 
<->  ( A  x.  C
) #  ( B  x.  C ) ) )
424, 41sylan2b 287 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C #  0 ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
43423impa 1194 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    e. wcel 2148   class class class wbr 4005  (class class class)co 5878   RRcr 7813   0cc0 7814    x. cmul 7819    < clt 7995   -ucneg 8132   # cap 8541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-ltxr 8000  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator