ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapmul1 Unicode version

Theorem reapmul1 8614
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8807. (Contributed by Jim Kingdon, 8-Feb-2020.)
Assertion
Ref Expression
reapmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )

Proof of Theorem reapmul1
StepHypRef Expression
1 0re 8019 . . . . 5  |-  0  e.  RR
2 reaplt 8607 . . . . 5  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  ( C #  0  <->  ( C  <  0  \/  0  <  C ) ) )
31, 2mpan2 425 . . . 4  |-  ( C  e.  RR  ->  ( C #  0  <->  ( C  <  0  \/  0  < 
C ) ) )
43pm5.32i 454 . . 3  |-  ( ( C  e.  RR  /\  C #  0 )  <->  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )
5 simp1 999 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  RR )
65recnd 8048 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  CC )
7 simp3l 1027 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  RR )
87recnd 8048 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  CC )
96, 8mulneg2d 8431 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  -u C
)  =  -u ( A  x.  C )
)
10 simp2 1000 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  RR )
1110recnd 8048 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  CC )
1211, 8mulneg2d 8431 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  -u C
)  =  -u ( B  x.  C )
)
139, 12breq12d 4042 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  -u C ) #  ( B  x.  -u C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
147renegcld 8399 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u C  e.  RR )
15 simp3r 1028 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  <  0 )
167lt0neg1d 8534 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( C  <  0  <->  0  <  -u C ) )
1715, 16mpbid 147 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
0  <  -u C )
18 reapmul1lem 8613 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( -u C  e.  RR  /\  0  <  -u C ) )  ->  ( A #  B  <->  ( A  x.  -u C
) #  ( B  x.  -u C ) ) )
195, 10, 14, 17, 18syl112anc 1253 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  -u C ) #  ( B  x.  -u C
) ) )
205, 7remulcld 8050 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  C
)  e.  RR )
2110, 7remulcld 8050 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  C
)  e.  RR )
2220, 21ltnegd 8542 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  <->  -u ( B  x.  C
)  <  -u ( A  x.  C ) ) )
2321, 20ltnegd 8542 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( B  x.  C )  <  ( A  x.  C )  <->  -u ( A  x.  C
)  <  -u ( B  x.  C ) ) )
2422, 23orbi12d 794 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( ( A  x.  C )  < 
( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
25 reaplt 8607 . . . . . . . . . 10  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  <-> 
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) ) ) )
2620, 21, 25syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  ( ( A  x.  C )  <  ( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) ) ) )
2720renegcld 8399 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( A  x.  C
)  e.  RR )
2821renegcld 8399 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( B  x.  C
)  e.  RR )
29 reaplt 8607 . . . . . . . . . . 11  |-  ( (
-u ( A  x.  C )  e.  RR  /\  -u ( B  x.  C
)  e.  RR )  ->  ( -u ( A  x.  C ) #  -u ( B  x.  C
)  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
3027, 28, 29syl2anc 411 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
31 orcom 729 . . . . . . . . . 10  |-  ( (
-u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C )
)  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) )
3230, 31bitrdi 196 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
3324, 26, 323bitr4d 220 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
3413, 19, 333bitr4d 220 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
35343expa 1205 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3635anassrs 400 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  C  <  0 )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
37 reapmul1lem 8613 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
38373expa 1205 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3938anassrs 400 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  0  <  C )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
4036, 39jaodan 798 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  ( C  <  0  \/  0  <  C ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C
) ) )
4140anasss 399 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )  ->  ( A #  B 
<->  ( A  x.  C
) #  ( B  x.  C ) ) )
424, 41sylan2b 287 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C #  0 ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
43423impa 1196 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    e. wcel 2164   class class class wbr 4029  (class class class)co 5918   RRcr 7871   0cc0 7872    x. cmul 7877    < clt 8054   -ucneg 8191   # cap 8600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator