ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapmul1 Unicode version

Theorem reapmul1 8542
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8734. (Contributed by Jim Kingdon, 8-Feb-2020.)
Assertion
Ref Expression
reapmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )

Proof of Theorem reapmul1
StepHypRef Expression
1 0re 7948 . . . . 5  |-  0  e.  RR
2 reaplt 8535 . . . . 5  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  ( C #  0  <->  ( C  <  0  \/  0  <  C ) ) )
31, 2mpan2 425 . . . 4  |-  ( C  e.  RR  ->  ( C #  0  <->  ( C  <  0  \/  0  < 
C ) ) )
43pm5.32i 454 . . 3  |-  ( ( C  e.  RR  /\  C #  0 )  <->  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )
5 simp1 997 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  RR )
65recnd 7976 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  CC )
7 simp3l 1025 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  RR )
87recnd 7976 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  CC )
96, 8mulneg2d 8359 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  -u C
)  =  -u ( A  x.  C )
)
10 simp2 998 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  RR )
1110recnd 7976 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  CC )
1211, 8mulneg2d 8359 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  -u C
)  =  -u ( B  x.  C )
)
139, 12breq12d 4013 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  -u C ) #  ( B  x.  -u C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
147renegcld 8327 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u C  e.  RR )
15 simp3r 1026 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  <  0 )
167lt0neg1d 8462 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( C  <  0  <->  0  <  -u C ) )
1715, 16mpbid 147 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
0  <  -u C )
18 reapmul1lem 8541 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( -u C  e.  RR  /\  0  <  -u C ) )  ->  ( A #  B  <->  ( A  x.  -u C
) #  ( B  x.  -u C ) ) )
195, 10, 14, 17, 18syl112anc 1242 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  -u C ) #  ( B  x.  -u C
) ) )
205, 7remulcld 7978 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  C
)  e.  RR )
2110, 7remulcld 7978 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  C
)  e.  RR )
2220, 21ltnegd 8470 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  <->  -u ( B  x.  C
)  <  -u ( A  x.  C ) ) )
2321, 20ltnegd 8470 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( B  x.  C )  <  ( A  x.  C )  <->  -u ( A  x.  C
)  <  -u ( B  x.  C ) ) )
2422, 23orbi12d 793 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( ( A  x.  C )  < 
( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
25 reaplt 8535 . . . . . . . . . 10  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  <-> 
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) ) ) )
2620, 21, 25syl2anc 411 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  ( ( A  x.  C )  <  ( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) ) ) )
2720renegcld 8327 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( A  x.  C
)  e.  RR )
2821renegcld 8327 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( B  x.  C
)  e.  RR )
29 reaplt 8535 . . . . . . . . . . 11  |-  ( (
-u ( A  x.  C )  e.  RR  /\  -u ( B  x.  C
)  e.  RR )  ->  ( -u ( A  x.  C ) #  -u ( B  x.  C
)  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
3027, 28, 29syl2anc 411 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
31 orcom 728 . . . . . . . . . 10  |-  ( (
-u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C )
)  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) )
3230, 31bitrdi 196 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
3324, 26, 323bitr4d 220 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
3413, 19, 333bitr4d 220 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
35343expa 1203 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3635anassrs 400 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  C  <  0 )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
37 reapmul1lem 8541 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
38373expa 1203 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3938anassrs 400 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  0  <  C )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
4036, 39jaodan 797 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  ( C  <  0  \/  0  <  C ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C
) ) )
4140anasss 399 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )  ->  ( A #  B 
<->  ( A  x.  C
) #  ( B  x.  C ) ) )
424, 41sylan2b 287 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C #  0 ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
43423impa 1194 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   RRcr 7801   0cc0 7802    x. cmul 7807    < clt 7982   -ucneg 8119   # cap 8528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-ltxr 7987  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator