Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reapmul1 | Unicode version |
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8684. (Contributed by Jim Kingdon, 8-Feb-2020.) |
Ref | Expression |
---|---|
reapmul1 | # # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 7899 | . . . . 5 | |
2 | reaplt 8486 | . . . . 5 # | |
3 | 1, 2 | mpan2 422 | . . . 4 # |
4 | 3 | pm5.32i 450 | . . 3 # |
5 | simp1 987 | . . . . . . . . . . 11 | |
6 | 5 | recnd 7927 | . . . . . . . . . 10 |
7 | simp3l 1015 | . . . . . . . . . . 11 | |
8 | 7 | recnd 7927 | . . . . . . . . . 10 |
9 | 6, 8 | mulneg2d 8310 | . . . . . . . . 9 |
10 | simp2 988 | . . . . . . . . . . 11 | |
11 | 10 | recnd 7927 | . . . . . . . . . 10 |
12 | 11, 8 | mulneg2d 8310 | . . . . . . . . 9 |
13 | 9, 12 | breq12d 3995 | . . . . . . . 8 # # |
14 | 7 | renegcld 8278 | . . . . . . . . 9 |
15 | simp3r 1016 | . . . . . . . . . 10 | |
16 | 7 | lt0neg1d 8413 | . . . . . . . . . 10 |
17 | 15, 16 | mpbid 146 | . . . . . . . . 9 |
18 | reapmul1lem 8492 | . . . . . . . . 9 # # | |
19 | 5, 10, 14, 17, 18 | syl112anc 1232 | . . . . . . . 8 # # |
20 | 5, 7 | remulcld 7929 | . . . . . . . . . . 11 |
21 | 10, 7 | remulcld 7929 | . . . . . . . . . . 11 |
22 | 20, 21 | ltnegd 8421 | . . . . . . . . . 10 |
23 | 21, 20 | ltnegd 8421 | . . . . . . . . . 10 |
24 | 22, 23 | orbi12d 783 | . . . . . . . . 9 |
25 | reaplt 8486 | . . . . . . . . . 10 # | |
26 | 20, 21, 25 | syl2anc 409 | . . . . . . . . 9 # |
27 | 20 | renegcld 8278 | . . . . . . . . . . 11 |
28 | 21 | renegcld 8278 | . . . . . . . . . . 11 |
29 | reaplt 8486 | . . . . . . . . . . 11 # | |
30 | 27, 28, 29 | syl2anc 409 | . . . . . . . . . 10 # |
31 | orcom 718 | . . . . . . . . . 10 | |
32 | 30, 31 | bitrdi 195 | . . . . . . . . 9 # |
33 | 24, 26, 32 | 3bitr4d 219 | . . . . . . . 8 # # |
34 | 13, 19, 33 | 3bitr4d 219 | . . . . . . 7 # # |
35 | 34 | 3expa 1193 | . . . . . 6 # # |
36 | 35 | anassrs 398 | . . . . 5 # # |
37 | reapmul1lem 8492 | . . . . . . 7 # # | |
38 | 37 | 3expa 1193 | . . . . . 6 # # |
39 | 38 | anassrs 398 | . . . . 5 # # |
40 | 36, 39 | jaodan 787 | . . . 4 # # |
41 | 40 | anasss 397 | . . 3 # # |
42 | 4, 41 | sylan2b 285 | . 2 # # # |
43 | 42 | 3impa 1184 | 1 # # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 w3a 968 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 cc0 7753 cmul 7758 clt 7933 cneg 8070 # cap 8479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-ltxr 7938 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |