ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapmul1 Unicode version

Theorem reapmul1 8357
Description: Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8548. (Contributed by Jim Kingdon, 8-Feb-2020.)
Assertion
Ref Expression
reapmul1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )

Proof of Theorem reapmul1
StepHypRef Expression
1 0re 7766 . . . . 5  |-  0  e.  RR
2 reaplt 8350 . . . . 5  |-  ( ( C  e.  RR  /\  0  e.  RR )  ->  ( C #  0  <->  ( C  <  0  \/  0  <  C ) ) )
31, 2mpan2 421 . . . 4  |-  ( C  e.  RR  ->  ( C #  0  <->  ( C  <  0  \/  0  < 
C ) ) )
43pm5.32i 449 . . 3  |-  ( ( C  e.  RR  /\  C #  0 )  <->  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )
5 simp1 981 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  RR )
65recnd 7794 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  A  e.  CC )
7 simp3l 1009 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  RR )
87recnd 7794 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  e.  CC )
96, 8mulneg2d 8174 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  -u C
)  =  -u ( A  x.  C )
)
10 simp2 982 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  RR )
1110recnd 7794 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  B  e.  CC )
1211, 8mulneg2d 8174 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  -u C
)  =  -u ( B  x.  C )
)
139, 12breq12d 3942 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  -u C ) #  ( B  x.  -u C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
147renegcld 8142 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u C  e.  RR )
15 simp3r 1010 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  C  <  0 )
167lt0neg1d 8277 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( C  <  0  <->  0  <  -u C ) )
1715, 16mpbid 146 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
0  <  -u C )
18 reapmul1lem 8356 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( -u C  e.  RR  /\  0  <  -u C ) )  ->  ( A #  B  <->  ( A  x.  -u C
) #  ( B  x.  -u C ) ) )
195, 10, 14, 17, 18syl112anc 1220 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  -u C ) #  ( B  x.  -u C
) ) )
205, 7remulcld 7796 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A  x.  C
)  e.  RR )
2110, 7remulcld 7796 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( B  x.  C
)  e.  RR )
2220, 21ltnegd 8285 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C )  <  ( B  x.  C )  <->  -u ( B  x.  C
)  <  -u ( A  x.  C ) ) )
2321, 20ltnegd 8285 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( B  x.  C )  <  ( A  x.  C )  <->  -u ( A  x.  C
)  <  -u ( B  x.  C ) ) )
2422, 23orbi12d 782 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( ( A  x.  C )  < 
( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
25 reaplt 8350 . . . . . . . . . 10  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR )  ->  ( ( A  x.  C ) #  ( B  x.  C )  <-> 
( ( A  x.  C )  <  ( B  x.  C )  \/  ( B  x.  C
)  <  ( A  x.  C ) ) ) )
2620, 21, 25syl2anc 408 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  ( ( A  x.  C )  <  ( B  x.  C
)  \/  ( B  x.  C )  < 
( A  x.  C
) ) ) )
2720renegcld 8142 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( A  x.  C
)  e.  RR )
2821renegcld 8142 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  ->  -u ( B  x.  C
)  e.  RR )
29 reaplt 8350 . . . . . . . . . . 11  |-  ( (
-u ( A  x.  C )  e.  RR  /\  -u ( B  x.  C
)  e.  RR )  ->  ( -u ( A  x.  C ) #  -u ( B  x.  C
)  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
3027, 28, 29syl2anc 408 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C ) ) ) )
31 orcom 717 . . . . . . . . . 10  |-  ( (
-u ( A  x.  C )  <  -u ( B  x.  C )  \/  -u ( B  x.  C )  <  -u ( A  x.  C )
)  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) )
3230, 31syl6bb 195 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( -u ( A  x.  C ) #  -u ( B  x.  C )  <->  ( -u ( B  x.  C )  <  -u ( A  x.  C )  \/  -u ( A  x.  C )  <  -u ( B  x.  C ) ) ) )
3324, 26, 323bitr4d 219 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( ( A  x.  C ) #  ( B  x.  C )  <->  -u ( A  x.  C ) #  -u ( B  x.  C
) ) )
3413, 19, 333bitr4d 219 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
35343expa 1181 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C  <  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3635anassrs 397 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  C  <  0 )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
37 reapmul1lem 8356 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
38373expa 1181 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
3938anassrs 397 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  0  <  C )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
4036, 39jaodan 786 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  C  e.  RR )  /\  ( C  <  0  \/  0  <  C ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C
) ) )
4140anasss 396 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( C  <  0  \/  0  <  C ) ) )  ->  ( A #  B 
<->  ( A  x.  C
) #  ( B  x.  C ) ) )
424, 41sylan2b 285 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  C #  0 ) )  ->  ( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
43423impa 1176 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  C #  0 ) )  -> 
( A #  B  <->  ( A  x.  C ) #  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   RRcr 7619   0cc0 7620    x. cmul 7625    < clt 7800   -ucneg 7934   # cap 8343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-ltxr 7805  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator