Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltmul12a | Unicode version |
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.) |
Ref | Expression |
---|---|
ltmul12a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 528 | . . . 4 | |
2 | simpllr 529 | . . . 4 | |
3 | simpll 524 | . . . . . 6 | |
4 | simprl 526 | . . . . . 6 | |
5 | 3, 4 | jca 304 | . . . . 5 |
6 | 5 | ad2ant2l 505 | . . . 4 |
7 | ltle 8007 | . . . . . . 7 | |
8 | 7 | imp 123 | . . . . . 6 |
9 | 8 | adantrl 475 | . . . . 5 |
10 | 9 | ad2ant2r 506 | . . . 4 |
11 | lemul1a 8774 | . . . 4 | |
12 | 1, 2, 6, 10, 11 | syl31anc 1236 | . . 3 |
13 | simplrl 530 | . . . . . . 7 | |
14 | simplrr 531 | . . . . . . 7 | |
15 | simpllr 529 | . . . . . . 7 | |
16 | 0re 7920 | . . . . . . . . . 10 | |
17 | lelttr 8008 | . . . . . . . . . 10 | |
18 | 16, 17 | mp3an1 1319 | . . . . . . . . 9 |
19 | 18 | imp 123 | . . . . . . . 8 |
20 | 19 | adantlr 474 | . . . . . . 7 |
21 | ltmul2 8772 | . . . . . . 7 | |
22 | 13, 14, 15, 20, 21 | syl112anc 1237 | . . . . . 6 |
23 | 22 | biimpa 294 | . . . . 5 |
24 | 23 | anasss 397 | . . . 4 |
25 | 24 | adantrrl 483 | . . 3 |
26 | remulcl 7902 | . . . . . 6 | |
27 | 26 | ad2ant2r 506 | . . . . 5 |
28 | remulcl 7902 | . . . . . 6 | |
29 | 28 | ad2ant2lr 507 | . . . . 5 |
30 | remulcl 7902 | . . . . . 6 | |
31 | 30 | ad2ant2l 505 | . . . . 5 |
32 | lelttr 8008 | . . . . 5 | |
33 | 27, 29, 31, 32 | syl3anc 1233 | . . . 4 |
34 | 33 | adantr 274 | . . 3 |
35 | 12, 25, 34 | mp2and 431 | . 2 |
36 | 35 | an4s 583 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2141 class class class wbr 3989 (class class class)co 5853 cr 7773 cc0 7774 cmul 7779 clt 7954 cle 7955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 |
This theorem is referenced by: ltmul12ad 8857 |
Copyright terms: Public domain | W3C validator |