| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltmul12a | Unicode version | ||
| Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.) |
| Ref | Expression |
|---|---|
| ltmul12a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll 533 |
. . . 4
| |
| 2 | simpllr 534 |
. . . 4
| |
| 3 | simpll 527 |
. . . . . 6
| |
| 4 | simprl 529 |
. . . . . 6
| |
| 5 | 3, 4 | jca 306 |
. . . . 5
|
| 6 | 5 | ad2ant2l 508 |
. . . 4
|
| 7 | ltle 8114 |
. . . . . . 7
| |
| 8 | 7 | imp 124 |
. . . . . 6
|
| 9 | 8 | adantrl 478 |
. . . . 5
|
| 10 | 9 | ad2ant2r 509 |
. . . 4
|
| 11 | lemul1a 8885 |
. . . 4
| |
| 12 | 1, 2, 6, 10, 11 | syl31anc 1252 |
. . 3
|
| 13 | simplrl 535 |
. . . . . . 7
| |
| 14 | simplrr 536 |
. . . . . . 7
| |
| 15 | simpllr 534 |
. . . . . . 7
| |
| 16 | 0re 8026 |
. . . . . . . . . 10
| |
| 17 | lelttr 8115 |
. . . . . . . . . 10
| |
| 18 | 16, 17 | mp3an1 1335 |
. . . . . . . . 9
|
| 19 | 18 | imp 124 |
. . . . . . . 8
|
| 20 | 19 | adantlr 477 |
. . . . . . 7
|
| 21 | ltmul2 8883 |
. . . . . . 7
| |
| 22 | 13, 14, 15, 20, 21 | syl112anc 1253 |
. . . . . 6
|
| 23 | 22 | biimpa 296 |
. . . . 5
|
| 24 | 23 | anasss 399 |
. . . 4
|
| 25 | 24 | adantrrl 486 |
. . 3
|
| 26 | remulcl 8007 |
. . . . . 6
| |
| 27 | 26 | ad2ant2r 509 |
. . . . 5
|
| 28 | remulcl 8007 |
. . . . . 6
| |
| 29 | 28 | ad2ant2lr 510 |
. . . . 5
|
| 30 | remulcl 8007 |
. . . . . 6
| |
| 31 | 30 | ad2ant2l 508 |
. . . . 5
|
| 32 | lelttr 8115 |
. . . . 5
| |
| 33 | 27, 29, 31, 32 | syl3anc 1249 |
. . . 4
|
| 34 | 33 | adantr 276 |
. . 3
|
| 35 | 12, 25, 34 | mp2and 433 |
. 2
|
| 36 | 35 | an4s 588 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 |
| This theorem is referenced by: ltmul12ad 8968 |
| Copyright terms: Public domain | W3C validator |