ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul12a Unicode version

Theorem ltmul12a 8887
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
ltmul12a  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)

Proof of Theorem ltmul12a
StepHypRef Expression
1 simplll 533 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  A  e.  RR )
2 simpllr 534 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  B  e.  RR )
3 simpll 527 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  C  e.  RR )
4 simprl 529 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  0  <_  C )
53, 4jca 306 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  ( C  e.  RR  /\  0  <_  C ) )
65ad2ant2l 508 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
7 ltle 8114 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
87imp 124 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  B
)  ->  A  <_  B )
98adantrl 478 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  <_  B )
109ad2ant2r 509 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  A  <_  B
)
11 lemul1a 8885 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
121, 2, 6, 10, 11syl31anc 1252 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
13 simplrl 535 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  C  e.  RR )
14 simplrr 536 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  D  e.  RR )
15 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  B  e.  RR )
16 0re 8026 . . . . . . . . . 10  |-  0  e.  RR
17 lelttr 8115 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <_  A  /\  A  <  B )  ->  0  <  B
) )
1816, 17mp3an1 1335 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  0  <  B ) )
1918imp 124 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <  B )
2019adantlr 477 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  0  <  B )
21 ltmul2 8883 . . . . . . 7  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( C  <  D  <->  ( B  x.  C )  <  ( B  x.  D ) ) )
2213, 14, 15, 20, 21syl112anc 1253 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  ( C  <  D  <->  ( B  x.  C )  <  ( B  x.  D )
) )
2322biimpa 296 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  /\  C  < 
D )  ->  ( B  x.  C )  <  ( B  x.  D
) )
2423anasss 399 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  C  <  D ) )  ->  ( B  x.  C )  <  ( B  x.  D
) )
2524adantrrl 486 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( B  x.  C )  <  ( B  x.  D )
)
26 remulcl 8007 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
2726ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  C
)  e.  RR )
28 remulcl 8007 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  e.  RR )
2928ad2ant2lr 510 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  x.  C
)  e.  RR )
30 remulcl 8007 . . . . . 6  |-  ( ( B  e.  RR  /\  D  e.  RR )  ->  ( B  x.  D
)  e.  RR )
3130ad2ant2l 508 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  x.  D
)  e.  RR )
32 lelttr 8115 . . . . 5  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( B  x.  D
)  e.  RR )  ->  ( ( ( A  x.  C )  <_  ( B  x.  C )  /\  ( B  x.  C )  <  ( B  x.  D
) )  ->  ( A  x.  C )  <  ( B  x.  D
) ) )
3327, 29, 31, 32syl3anc 1249 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  x.  C )  <_ 
( B  x.  C
)  /\  ( B  x.  C )  <  ( B  x.  D )
)  ->  ( A  x.  C )  <  ( B  x.  D )
) )
3433adantr 276 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( ( ( A  x.  C )  <_  ( B  x.  C )  /\  ( B  x.  C )  <  ( B  x.  D
) )  ->  ( A  x.  C )  <  ( B  x.  D
) ) )
3512, 25, 34mp2and 433 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)
3635an4s 588 1  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   RRcr 7878   0cc0 7879    x. cmul 7884    < clt 8061    <_ cle 8062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by:  ltmul12ad  8968
  Copyright terms: Public domain W3C validator