ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul12a Unicode version

Theorem ltmul12a 8904
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
ltmul12a  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)

Proof of Theorem ltmul12a
StepHypRef Expression
1 simplll 533 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  A  e.  RR )
2 simpllr 534 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  B  e.  RR )
3 simpll 527 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  C  e.  RR )
4 simprl 529 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  0  <_  C )
53, 4jca 306 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  ( C  e.  RR  /\  0  <_  C ) )
65ad2ant2l 508 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
7 ltle 8131 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
87imp 124 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  B
)  ->  A  <_  B )
98adantrl 478 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  <_  B )
109ad2ant2r 509 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  A  <_  B
)
11 lemul1a 8902 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
121, 2, 6, 10, 11syl31anc 1252 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
13 simplrl 535 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  C  e.  RR )
14 simplrr 536 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  D  e.  RR )
15 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  B  e.  RR )
16 0re 8043 . . . . . . . . . 10  |-  0  e.  RR
17 lelttr 8132 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <_  A  /\  A  <  B )  ->  0  <  B
) )
1816, 17mp3an1 1335 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  0  <  B ) )
1918imp 124 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <  B )
2019adantlr 477 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  0  <  B )
21 ltmul2 8900 . . . . . . 7  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( C  <  D  <->  ( B  x.  C )  <  ( B  x.  D ) ) )
2213, 14, 15, 20, 21syl112anc 1253 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  ( C  <  D  <->  ( B  x.  C )  <  ( B  x.  D )
) )
2322biimpa 296 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  /\  C  < 
D )  ->  ( B  x.  C )  <  ( B  x.  D
) )
2423anasss 399 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  C  <  D ) )  ->  ( B  x.  C )  <  ( B  x.  D
) )
2524adantrrl 486 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( B  x.  C )  <  ( B  x.  D )
)
26 remulcl 8024 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
2726ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  C
)  e.  RR )
28 remulcl 8024 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  e.  RR )
2928ad2ant2lr 510 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  x.  C
)  e.  RR )
30 remulcl 8024 . . . . . 6  |-  ( ( B  e.  RR  /\  D  e.  RR )  ->  ( B  x.  D
)  e.  RR )
3130ad2ant2l 508 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  x.  D
)  e.  RR )
32 lelttr 8132 . . . . 5  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( B  x.  D
)  e.  RR )  ->  ( ( ( A  x.  C )  <_  ( B  x.  C )  /\  ( B  x.  C )  <  ( B  x.  D
) )  ->  ( A  x.  C )  <  ( B  x.  D
) ) )
3327, 29, 31, 32syl3anc 1249 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  x.  C )  <_ 
( B  x.  C
)  /\  ( B  x.  C )  <  ( B  x.  D )
)  ->  ( A  x.  C )  <  ( B  x.  D )
) )
3433adantr 276 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( ( ( A  x.  C )  <_  ( B  x.  C )  /\  ( B  x.  C )  <  ( B  x.  D
) )  ->  ( A  x.  C )  <  ( B  x.  D
) ) )
3512, 25, 34mp2and 433 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)
3635an4s 588 1  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896    x. cmul 7901    < clt 8078    <_ cle 8079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626
This theorem is referenced by:  ltmul12ad  8985
  Copyright terms: Public domain W3C validator