ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmul12a Unicode version

Theorem ltmul12a 8932
Description: Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
ltmul12a  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)

Proof of Theorem ltmul12a
StepHypRef Expression
1 simplll 533 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  A  e.  RR )
2 simpllr 534 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  B  e.  RR )
3 simpll 527 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  C  e.  RR )
4 simprl 529 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  0  <_  C )
53, 4jca 306 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D
) )  ->  ( C  e.  RR  /\  0  <_  C ) )
65ad2ant2l 508 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( C  e.  RR  /\  0  <_  C ) )
7 ltle 8159 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
87imp 124 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  <  B
)  ->  A  <_  B )
98adantrl 478 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  A  <_  B )
109ad2ant2r 509 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  A  <_  B
)
11 lemul1a 8930 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
121, 2, 6, 10, 11syl31anc 1252 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
13 simplrl 535 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  C  e.  RR )
14 simplrr 536 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  D  e.  RR )
15 simpllr 534 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  B  e.  RR )
16 0re 8071 . . . . . . . . . 10  |-  0  e.  RR
17 lelttr 8160 . . . . . . . . . 10  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  B  e.  RR )  ->  (
( 0  <_  A  /\  A  <  B )  ->  0  <  B
) )
1816, 17mp3an1 1336 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( 0  <_  A  /\  A  <  B
)  ->  0  <  B ) )
1918imp 124 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B
) )  ->  0  <  B )
2019adantlr 477 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  0  <  B )
21 ltmul2 8928 . . . . . . 7  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( C  <  D  <->  ( B  x.  C )  <  ( B  x.  D ) ) )
2213, 14, 15, 20, 21syl112anc 1253 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  ->  ( C  <  D  <->  ( B  x.  C )  <  ( B  x.  D )
) )
2322biimpa 296 . . . . 5  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( 0  <_  A  /\  A  <  B ) )  /\  C  < 
D )  ->  ( B  x.  C )  <  ( B  x.  D
) )
2423anasss 399 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  C  <  D ) )  ->  ( B  x.  C )  <  ( B  x.  D
) )
2524adantrrl 486 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( B  x.  C )  <  ( B  x.  D )
)
26 remulcl 8052 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
2726ad2ant2r 509 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( A  x.  C
)  e.  RR )
28 remulcl 8052 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  e.  RR )
2928ad2ant2lr 510 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  x.  C
)  e.  RR )
30 remulcl 8052 . . . . . 6  |-  ( ( B  e.  RR  /\  D  e.  RR )  ->  ( B  x.  D
)  e.  RR )
3130ad2ant2l 508 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( B  x.  D
)  e.  RR )
32 lelttr 8160 . . . . 5  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( B  x.  D
)  e.  RR )  ->  ( ( ( A  x.  C )  <_  ( B  x.  C )  /\  ( B  x.  C )  <  ( B  x.  D
) )  ->  ( A  x.  C )  <  ( B  x.  D
) ) )
3327, 29, 31, 32syl3anc 1249 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  -> 
( ( ( A  x.  C )  <_ 
( B  x.  C
)  /\  ( B  x.  C )  <  ( B  x.  D )
)  ->  ( A  x.  C )  <  ( B  x.  D )
) )
3433adantr 276 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( ( ( A  x.  C )  <_  ( B  x.  C )  /\  ( B  x.  C )  <  ( B  x.  D
) )  ->  ( A  x.  C )  <  ( B  x.  D
) ) )
3512, 25, 34mp2and 433 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( C  e.  RR  /\  D  e.  RR ) )  /\  ( ( 0  <_  A  /\  A  <  B
)  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)
3635an4s 588 1  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  <  ( B  x.  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   RRcr 7923   0cc0 7924    x. cmul 7929    < clt 8106    <_ cle 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-iota 5231  df-fun 5272  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654
This theorem is referenced by:  ltmul12ad  9013
  Copyright terms: Public domain W3C validator