| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grppropd | Unicode version | ||
| Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| grppropd.1 | 
 | 
| grppropd.2 | 
 | 
| grppropd.3 | 
 | 
| Ref | Expression | 
|---|---|
| grppropd | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grppropd.1 | 
. . . 4
 | |
| 2 | grppropd.2 | 
. . . 4
 | |
| 3 | grppropd.3 | 
. . . 4
 | |
| 4 | 1, 2, 3 | mndpropd 13081 | 
. . 3
 | 
| 5 | 1 | adantr 276 | 
. . . . . . . . 9
 | 
| 6 | 2 | adantr 276 | 
. . . . . . . . 9
 | 
| 7 | simprl 529 | 
. . . . . . . . . 10
 | |
| 8 | 5, 7 | basmexd 12738 | 
. . . . . . . . 9
 | 
| 9 | 6, 7 | basmexd 12738 | 
. . . . . . . . 9
 | 
| 10 | 3 | ralrimivva 2579 | 
. . . . . . . . . . . . . 14
 | 
| 11 | oveq1 5929 | 
. . . . . . . . . . . . . . . 16
 | |
| 12 | oveq1 5929 | 
. . . . . . . . . . . . . . . 16
 | |
| 13 | 11, 12 | eqeq12d 2211 | 
. . . . . . . . . . . . . . 15
 | 
| 14 | oveq2 5930 | 
. . . . . . . . . . . . . . . 16
 | |
| 15 | oveq2 5930 | 
. . . . . . . . . . . . . . . 16
 | |
| 16 | 14, 15 | eqeq12d 2211 | 
. . . . . . . . . . . . . . 15
 | 
| 17 | 13, 16 | cbvral2v 2742 | 
. . . . . . . . . . . . . 14
 | 
| 18 | 10, 17 | sylib 122 | 
. . . . . . . . . . . . 13
 | 
| 19 | 18 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 20 | 19 | r19.21bi 2585 | 
. . . . . . . . . . 11
 | 
| 21 | 20 | r19.21bi 2585 | 
. . . . . . . . . 10
 | 
| 22 | 21 | anasss 399 | 
. . . . . . . . 9
 | 
| 23 | 5, 6, 8, 9, 22 | grpidpropdg 13017 | 
. . . . . . . 8
 | 
| 24 | 3, 23 | eqeq12d 2211 | 
. . . . . . 7
 | 
| 25 | 24 | anass1rs 571 | 
. . . . . 6
 | 
| 26 | 25 | rexbidva 2494 | 
. . . . 5
 | 
| 27 | 26 | ralbidva 2493 | 
. . . 4
 | 
| 28 | 1 | rexeqdv 2700 | 
. . . . 5
 | 
| 29 | 1, 28 | raleqbidv 2709 | 
. . . 4
 | 
| 30 | 2 | rexeqdv 2700 | 
. . . . 5
 | 
| 31 | 2, 30 | raleqbidv 2709 | 
. . . 4
 | 
| 32 | 27, 29, 31 | 3bitr3d 218 | 
. . 3
 | 
| 33 | 4, 32 | anbi12d 473 | 
. 2
 | 
| 34 | eqid 2196 | 
. . 3
 | |
| 35 | eqid 2196 | 
. . 3
 | |
| 36 | eqid 2196 | 
. . 3
 | |
| 37 | 34, 35, 36 | isgrp 13138 | 
. 2
 | 
| 38 | eqid 2196 | 
. . 3
 | |
| 39 | eqid 2196 | 
. . 3
 | |
| 40 | eqid 2196 | 
. . 3
 | |
| 41 | 38, 39, 40 | isgrp 13138 | 
. 2
 | 
| 42 | 33, 37, 41 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 | 
| This theorem is referenced by: grpprop 13150 grppropstrg 13151 ghmpropd 13413 ablpropd 13426 ringpropd 13594 opprring 13635 opprsubgg 13640 lmodprop2d 13904 sralmod 14006 | 
| Copyright terms: Public domain | W3C validator |