| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grppropd | Unicode version | ||
| Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| grppropd.1 |
|
| grppropd.2 |
|
| grppropd.3 |
|
| Ref | Expression |
|---|---|
| grppropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grppropd.1 |
. . . 4
| |
| 2 | grppropd.2 |
. . . 4
| |
| 3 | grppropd.3 |
. . . 4
| |
| 4 | 1, 2, 3 | mndpropd 13468 |
. . 3
|
| 5 | 1 | adantr 276 |
. . . . . . . . 9
|
| 6 | 2 | adantr 276 |
. . . . . . . . 9
|
| 7 | simprl 529 |
. . . . . . . . . 10
| |
| 8 | 5, 7 | basmexd 13088 |
. . . . . . . . 9
|
| 9 | 6, 7 | basmexd 13088 |
. . . . . . . . 9
|
| 10 | 3 | ralrimivva 2612 |
. . . . . . . . . . . . . 14
|
| 11 | oveq1 6007 |
. . . . . . . . . . . . . . . 16
| |
| 12 | oveq1 6007 |
. . . . . . . . . . . . . . . 16
| |
| 13 | 11, 12 | eqeq12d 2244 |
. . . . . . . . . . . . . . 15
|
| 14 | oveq2 6008 |
. . . . . . . . . . . . . . . 16
| |
| 15 | oveq2 6008 |
. . . . . . . . . . . . . . . 16
| |
| 16 | 14, 15 | eqeq12d 2244 |
. . . . . . . . . . . . . . 15
|
| 17 | 13, 16 | cbvral2v 2778 |
. . . . . . . . . . . . . 14
|
| 18 | 10, 17 | sylib 122 |
. . . . . . . . . . . . 13
|
| 19 | 18 | adantr 276 |
. . . . . . . . . . . 12
|
| 20 | 19 | r19.21bi 2618 |
. . . . . . . . . . 11
|
| 21 | 20 | r19.21bi 2618 |
. . . . . . . . . 10
|
| 22 | 21 | anasss 399 |
. . . . . . . . 9
|
| 23 | 5, 6, 8, 9, 22 | grpidpropdg 13402 |
. . . . . . . 8
|
| 24 | 3, 23 | eqeq12d 2244 |
. . . . . . 7
|
| 25 | 24 | anass1rs 571 |
. . . . . 6
|
| 26 | 25 | rexbidva 2527 |
. . . . 5
|
| 27 | 26 | ralbidva 2526 |
. . . 4
|
| 28 | 1 | rexeqdv 2735 |
. . . . 5
|
| 29 | 1, 28 | raleqbidv 2744 |
. . . 4
|
| 30 | 2 | rexeqdv 2735 |
. . . . 5
|
| 31 | 2, 30 | raleqbidv 2744 |
. . . 4
|
| 32 | 27, 29, 31 | 3bitr3d 218 |
. . 3
|
| 33 | 4, 32 | anbi12d 473 |
. 2
|
| 34 | eqid 2229 |
. . 3
| |
| 35 | eqid 2229 |
. . 3
| |
| 36 | eqid 2229 |
. . 3
| |
| 37 | 34, 35, 36 | isgrp 13534 |
. 2
|
| 38 | eqid 2229 |
. . 3
| |
| 39 | eqid 2229 |
. . 3
| |
| 40 | eqid 2229 |
. . 3
| |
| 41 | 38, 39, 40 | isgrp 13534 |
. 2
|
| 42 | 33, 37, 41 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-inn 9107 df-2 9165 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-0g 13286 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 |
| This theorem is referenced by: grpprop 13546 grppropstrg 13547 ghmpropd 13815 ablpropd 13828 ringpropd 13996 opprring 14037 opprsubgg 14042 lmodprop2d 14306 sralmod 14408 psrgrp 14643 |
| Copyright terms: Public domain | W3C validator |