| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grppropd | Unicode version | ||
| Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| grppropd.1 |
|
| grppropd.2 |
|
| grppropd.3 |
|
| Ref | Expression |
|---|---|
| grppropd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grppropd.1 |
. . . 4
| |
| 2 | grppropd.2 |
. . . 4
| |
| 3 | grppropd.3 |
. . . 4
| |
| 4 | 1, 2, 3 | mndpropd 13347 |
. . 3
|
| 5 | 1 | adantr 276 |
. . . . . . . . 9
|
| 6 | 2 | adantr 276 |
. . . . . . . . 9
|
| 7 | simprl 529 |
. . . . . . . . . 10
| |
| 8 | 5, 7 | basmexd 12967 |
. . . . . . . . 9
|
| 9 | 6, 7 | basmexd 12967 |
. . . . . . . . 9
|
| 10 | 3 | ralrimivva 2589 |
. . . . . . . . . . . . . 14
|
| 11 | oveq1 5964 |
. . . . . . . . . . . . . . . 16
| |
| 12 | oveq1 5964 |
. . . . . . . . . . . . . . . 16
| |
| 13 | 11, 12 | eqeq12d 2221 |
. . . . . . . . . . . . . . 15
|
| 14 | oveq2 5965 |
. . . . . . . . . . . . . . . 16
| |
| 15 | oveq2 5965 |
. . . . . . . . . . . . . . . 16
| |
| 16 | 14, 15 | eqeq12d 2221 |
. . . . . . . . . . . . . . 15
|
| 17 | 13, 16 | cbvral2v 2752 |
. . . . . . . . . . . . . 14
|
| 18 | 10, 17 | sylib 122 |
. . . . . . . . . . . . 13
|
| 19 | 18 | adantr 276 |
. . . . . . . . . . . 12
|
| 20 | 19 | r19.21bi 2595 |
. . . . . . . . . . 11
|
| 21 | 20 | r19.21bi 2595 |
. . . . . . . . . 10
|
| 22 | 21 | anasss 399 |
. . . . . . . . 9
|
| 23 | 5, 6, 8, 9, 22 | grpidpropdg 13281 |
. . . . . . . 8
|
| 24 | 3, 23 | eqeq12d 2221 |
. . . . . . 7
|
| 25 | 24 | anass1rs 571 |
. . . . . 6
|
| 26 | 25 | rexbidva 2504 |
. . . . 5
|
| 27 | 26 | ralbidva 2503 |
. . . 4
|
| 28 | 1 | rexeqdv 2710 |
. . . . 5
|
| 29 | 1, 28 | raleqbidv 2719 |
. . . 4
|
| 30 | 2 | rexeqdv 2710 |
. . . . 5
|
| 31 | 2, 30 | raleqbidv 2719 |
. . . 4
|
| 32 | 27, 29, 31 | 3bitr3d 218 |
. . 3
|
| 33 | 4, 32 | anbi12d 473 |
. 2
|
| 34 | eqid 2206 |
. . 3
| |
| 35 | eqid 2206 |
. . 3
| |
| 36 | eqid 2206 |
. . 3
| |
| 37 | 34, 35, 36 | isgrp 13413 |
. 2
|
| 38 | eqid 2206 |
. . 3
| |
| 39 | eqid 2206 |
. . 3
| |
| 40 | eqid 2206 |
. . 3
| |
| 41 | 38, 39, 40 | isgrp 13413 |
. 2
|
| 42 | 33, 37, 41 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-riota 5912 df-ov 5960 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 |
| This theorem is referenced by: grpprop 13425 grppropstrg 13426 ghmpropd 13694 ablpropd 13707 ringpropd 13875 opprring 13916 opprsubgg 13921 lmodprop2d 14185 sralmod 14287 psrgrp 14522 |
| Copyright terms: Public domain | W3C validator |