Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grppropd | Unicode version |
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
grppropd.1 | |
grppropd.2 | |
grppropd.3 |
Ref | Expression |
---|---|
grppropd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grppropd.1 | . . . 4 | |
2 | grppropd.2 | . . . 4 | |
3 | grppropd.3 | . . . 4 | |
4 | 1, 2, 3 | mndpropd 12676 | . . 3 |
5 | 1 | adantr 274 | . . . . . . . . 9 |
6 | 2 | adantr 274 | . . . . . . . . 9 |
7 | simprl 526 | . . . . . . . . . 10 | |
8 | 5, 7 | basmexd 12475 | . . . . . . . . 9 |
9 | 6, 7 | basmexd 12475 | . . . . . . . . 9 |
10 | 3 | ralrimivva 2552 | . . . . . . . . . . . . . 14 |
11 | oveq1 5860 | . . . . . . . . . . . . . . . 16 | |
12 | oveq1 5860 | . . . . . . . . . . . . . . . 16 | |
13 | 11, 12 | eqeq12d 2185 | . . . . . . . . . . . . . . 15 |
14 | oveq2 5861 | . . . . . . . . . . . . . . . 16 | |
15 | oveq2 5861 | . . . . . . . . . . . . . . . 16 | |
16 | 14, 15 | eqeq12d 2185 | . . . . . . . . . . . . . . 15 |
17 | 13, 16 | cbvral2v 2709 | . . . . . . . . . . . . . 14 |
18 | 10, 17 | sylib 121 | . . . . . . . . . . . . 13 |
19 | 18 | adantr 274 | . . . . . . . . . . . 12 |
20 | 19 | r19.21bi 2558 | . . . . . . . . . . 11 |
21 | 20 | r19.21bi 2558 | . . . . . . . . . 10 |
22 | 21 | anasss 397 | . . . . . . . . 9 |
23 | 5, 6, 8, 9, 22 | grpidpropdg 12628 | . . . . . . . 8 |
24 | 3, 23 | eqeq12d 2185 | . . . . . . 7 |
25 | 24 | anass1rs 566 | . . . . . 6 |
26 | 25 | rexbidva 2467 | . . . . 5 |
27 | 26 | ralbidva 2466 | . . . 4 |
28 | 1 | rexeqdv 2672 | . . . . 5 |
29 | 1, 28 | raleqbidv 2677 | . . . 4 |
30 | 2 | rexeqdv 2672 | . . . . 5 |
31 | 2, 30 | raleqbidv 2677 | . . . 4 |
32 | 27, 29, 31 | 3bitr3d 217 | . . 3 |
33 | 4, 32 | anbi12d 470 | . 2 |
34 | eqid 2170 | . . 3 | |
35 | eqid 2170 | . . 3 | |
36 | eqid 2170 | . . 3 | |
37 | 34, 35, 36 | isgrp 12714 | . 2 |
38 | eqid 2170 | . . 3 | |
39 | eqid 2170 | . . 3 | |
40 | eqid 2170 | . . 3 | |
41 | 38, 39, 40 | isgrp 12714 | . 2 |
42 | 33, 37, 41 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wral 2448 wrex 2449 cvv 2730 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cmnd 12652 cgrp 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-riota 5809 df-ov 5856 df-inn 8879 df-2 8937 df-ndx 12419 df-slot 12420 df-base 12422 df-plusg 12493 df-0g 12598 df-mgm 12610 df-sgrp 12643 df-mnd 12653 df-grp 12711 |
This theorem is referenced by: grpprop 12725 |
Copyright terms: Public domain | W3C validator |