Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grppropd | Unicode version |
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
grppropd.1 | |
grppropd.2 | |
grppropd.3 |
Ref | Expression |
---|---|
grppropd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grppropd.1 | . . . 4 | |
2 | grppropd.2 | . . . 4 | |
3 | grppropd.3 | . . . 4 | |
4 | 1, 2, 3 | mndpropd 12705 | . . 3 |
5 | 1 | adantr 276 | . . . . . . . . 9 |
6 | 2 | adantr 276 | . . . . . . . . 9 |
7 | simprl 529 | . . . . . . . . . 10 | |
8 | 5, 7 | basmexd 12486 | . . . . . . . . 9 |
9 | 6, 7 | basmexd 12486 | . . . . . . . . 9 |
10 | 3 | ralrimivva 2557 | . . . . . . . . . . . . . 14 |
11 | oveq1 5872 | . . . . . . . . . . . . . . . 16 | |
12 | oveq1 5872 | . . . . . . . . . . . . . . . 16 | |
13 | 11, 12 | eqeq12d 2190 | . . . . . . . . . . . . . . 15 |
14 | oveq2 5873 | . . . . . . . . . . . . . . . 16 | |
15 | oveq2 5873 | . . . . . . . . . . . . . . . 16 | |
16 | 14, 15 | eqeq12d 2190 | . . . . . . . . . . . . . . 15 |
17 | 13, 16 | cbvral2v 2714 | . . . . . . . . . . . . . 14 |
18 | 10, 17 | sylib 122 | . . . . . . . . . . . . 13 |
19 | 18 | adantr 276 | . . . . . . . . . . . 12 |
20 | 19 | r19.21bi 2563 | . . . . . . . . . . 11 |
21 | 20 | r19.21bi 2563 | . . . . . . . . . 10 |
22 | 21 | anasss 399 | . . . . . . . . 9 |
23 | 5, 6, 8, 9, 22 | grpidpropdg 12657 | . . . . . . . 8 |
24 | 3, 23 | eqeq12d 2190 | . . . . . . 7 |
25 | 24 | anass1rs 571 | . . . . . 6 |
26 | 25 | rexbidva 2472 | . . . . 5 |
27 | 26 | ralbidva 2471 | . . . 4 |
28 | 1 | rexeqdv 2677 | . . . . 5 |
29 | 1, 28 | raleqbidv 2682 | . . . 4 |
30 | 2 | rexeqdv 2677 | . . . . 5 |
31 | 2, 30 | raleqbidv 2682 | . . . 4 |
32 | 27, 29, 31 | 3bitr3d 218 | . . 3 |
33 | 4, 32 | anbi12d 473 | . 2 |
34 | eqid 2175 | . . 3 | |
35 | eqid 2175 | . . 3 | |
36 | eqid 2175 | . . 3 | |
37 | 34, 35, 36 | isgrp 12743 | . 2 |
38 | eqid 2175 | . . 3 | |
39 | eqid 2175 | . . 3 | |
40 | eqid 2175 | . . 3 | |
41 | 38, 39, 40 | isgrp 12743 | . 2 |
42 | 33, 37, 41 | 3bitr4g 223 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wral 2453 wrex 2454 cvv 2735 cfv 5208 (class class class)co 5865 cbs 12427 cplusg 12491 c0g 12625 cmnd 12681 cgrp 12737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-cnex 7877 ax-resscn 7878 ax-1re 7880 ax-addrcl 7883 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-riota 5821 df-ov 5868 df-inn 8891 df-2 8949 df-ndx 12430 df-slot 12431 df-base 12433 df-plusg 12504 df-0g 12627 df-mgm 12639 df-sgrp 12672 df-mnd 12682 df-grp 12740 |
This theorem is referenced by: grpprop 12754 grppropstrg 12755 ablpropd 12895 ringpropd 13009 |
Copyright terms: Public domain | W3C validator |