ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grppropd Unicode version

Theorem grppropd 13149
Description: If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
grppropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
grppropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
grppropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
Assertion
Ref Expression
grppropd  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem grppropd
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grppropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 grppropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
3 grppropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
41, 2, 3mndpropd 13081 . . 3  |-  ( ph  ->  ( K  e.  Mnd  <->  L  e.  Mnd ) )
51adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  B  =  ( Base `  K ) )
62adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  B  =  ( Base `  L ) )
7 simprl 529 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  x  e.  B )
85, 7basmexd 12738 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  K  e.  _V )
96, 7basmexd 12738 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  L  e.  _V )
103ralrimivva 2579 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
11 oveq1 5929 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x ( +g  `  K
) y )  =  ( z ( +g  `  K ) y ) )
12 oveq1 5929 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  (
x ( +g  `  L
) y )  =  ( z ( +g  `  L ) y ) )
1311, 12eqeq12d 2211 . . . . . . . . . . . . . . 15  |-  ( x  =  z  ->  (
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y )  <->  ( z
( +g  `  K ) y )  =  ( z ( +g  `  L
) y ) ) )
14 oveq2 5930 . . . . . . . . . . . . . . . 16  |-  ( y  =  w  ->  (
z ( +g  `  K
) y )  =  ( z ( +g  `  K ) w ) )
15 oveq2 5930 . . . . . . . . . . . . . . . 16  |-  ( y  =  w  ->  (
z ( +g  `  L
) y )  =  ( z ( +g  `  L ) w ) )
1614, 15eqeq12d 2211 . . . . . . . . . . . . . . 15  |-  ( y  =  w  ->  (
( z ( +g  `  K ) y )  =  ( z ( +g  `  L ) y )  <->  ( z
( +g  `  K ) w )  =  ( z ( +g  `  L
) w ) ) )
1713, 16cbvral2v 2742 . . . . . . . . . . . . . 14  |-  ( A. x  e.  B  A. y  e.  B  (
x ( +g  `  K
) y )  =  ( x ( +g  `  L ) y )  <->  A. z  e.  B  A. w  e.  B  ( z ( +g  `  K ) w )  =  ( z ( +g  `  L ) w ) )
1810, 17sylib 122 . . . . . . . . . . . . 13  |-  ( ph  ->  A. z  e.  B  A. w  e.  B  ( z ( +g  `  K ) w )  =  ( z ( +g  `  L ) w ) )
1918adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  A. z  e.  B  A. w  e.  B  ( z ( +g  `  K ) w )  =  ( z ( +g  `  L ) w ) )
2019r19.21bi 2585 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  B )  ->  A. w  e.  B  ( z
( +g  `  K ) w )  =  ( z ( +g  `  L
) w ) )
2120r19.21bi 2585 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  B  /\  y  e.  B
) )  /\  z  e.  B )  /\  w  e.  B )  ->  (
z ( +g  `  K
) w )  =  ( z ( +g  `  L ) w ) )
2221anasss 399 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  B  /\  y  e.  B )
)  /\  ( z  e.  B  /\  w  e.  B ) )  -> 
( z ( +g  `  K ) w )  =  ( z ( +g  `  L ) w ) )
235, 6, 8, 9, 22grpidpropdg 13017 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( 0g `  K
)  =  ( 0g
`  L ) )
243, 23eqeq12d 2211 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( ( x ( +g  `  K ) y )  =  ( 0g `  K )  <-> 
( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
2524anass1rs 571 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
2625rexbidva 2494 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  ( E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  E. x  e.  B  ( x
( +g  `  L ) y )  =  ( 0g `  L ) ) )
2726ralbidva 2493 . . . 4  |-  ( ph  ->  ( A. y  e.  B  E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  A. y  e.  B  E. x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
281rexeqdv 2700 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  E. x  e.  ( Base `  K ) ( x ( +g  `  K
) y )  =  ( 0g `  K
) ) )
291, 28raleqbidv 2709 . . . 4  |-  ( ph  ->  ( A. y  e.  B  E. x  e.  B  ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  A. y  e.  ( Base `  K ) E. x  e.  ( Base `  K ) ( x ( +g  `  K
) y )  =  ( 0g `  K
) ) )
302rexeqdv 2700 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L )  <->  E. x  e.  ( Base `  L ) ( x ( +g  `  L
) y )  =  ( 0g `  L
) ) )
312, 30raleqbidv 2709 . . . 4  |-  ( ph  ->  ( A. y  e.  B  E. x  e.  B  ( x ( +g  `  L ) y )  =  ( 0g `  L )  <->  A. y  e.  ( Base `  L ) E. x  e.  ( Base `  L ) ( x ( +g  `  L
) y )  =  ( 0g `  L
) ) )
3227, 29, 313bitr3d 218 . . 3  |-  ( ph  ->  ( A. y  e.  ( Base `  K
) E. x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K )  <->  A. y  e.  ( Base `  L ) E. x  e.  ( Base `  L ) ( x ( +g  `  L
) y )  =  ( 0g `  L
) ) )
334, 32anbi12d 473 . 2  |-  ( ph  ->  ( ( K  e. 
Mnd  /\  A. y  e.  ( Base `  K
) E. x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) )  <->  ( L  e. 
Mnd  /\  A. y  e.  ( Base `  L
) E. x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) ) )
34 eqid 2196 . . 3  |-  ( Base `  K )  =  (
Base `  K )
35 eqid 2196 . . 3  |-  ( +g  `  K )  =  ( +g  `  K )
36 eqid 2196 . . 3  |-  ( 0g
`  K )  =  ( 0g `  K
)
3734, 35, 36isgrp 13138 . 2  |-  ( K  e.  Grp  <->  ( K  e.  Mnd  /\  A. y  e.  ( Base `  K
) E. x  e.  ( Base `  K
) ( x ( +g  `  K ) y )  =  ( 0g `  K ) ) )
38 eqid 2196 . . 3  |-  ( Base `  L )  =  (
Base `  L )
39 eqid 2196 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
40 eqid 2196 . . 3  |-  ( 0g
`  L )  =  ( 0g `  L
)
4138, 39, 40isgrp 13138 . 2  |-  ( L  e.  Grp  <->  ( L  e.  Mnd  /\  A. y  e.  ( Base `  L
) E. x  e.  ( Base `  L
) ( x ( +g  `  L ) y )  =  ( 0g `  L ) ) )
4233, 37, 413bitr4g 223 1  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   _Vcvv 2763   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Mndcmnd 13057   Grpcgrp 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135
This theorem is referenced by:  grpprop  13150  grppropstrg  13151  ghmpropd  13413  ablpropd  13426  ringpropd  13594  opprring  13635  opprsubgg  13640  lmodprop2d  13904  sralmod  14006
  Copyright terms: Public domain W3C validator