ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0seqcvgd Unicode version

Theorem nn0seqcvgd 11995
Description: A strictly-decreasing nonnegative integer sequence with initial term  N reaches zero by the  N th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
nn0seqcvgd.1  |-  ( ph  ->  F : NN0 --> NN0 )
nn0seqcvgd.2  |-  ( ph  ->  N  =  ( F `
 0 ) )
nn0seqcvgd.3  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  =/=  0  ->  ( F `  ( k  +  1 ) )  <  ( F `  k ) ) )
Assertion
Ref Expression
nn0seqcvgd  |-  ( ph  ->  ( F `  N
)  =  0 )
Distinct variable groups:    k, F    k, N    ph, k

Proof of Theorem nn0seqcvgd
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 nn0seqcvgd.2 . . . . . 6  |-  ( ph  ->  N  =  ( F `
 0 ) )
2 nn0seqcvgd.1 . . . . . . 7  |-  ( ph  ->  F : NN0 --> NN0 )
3 0nn0 9150 . . . . . . 7  |-  0  e.  NN0
4 ffvelrn 5629 . . . . . . 7  |-  ( ( F : NN0 --> NN0  /\  0  e.  NN0 )  -> 
( F `  0
)  e.  NN0 )
52, 3, 4sylancl 411 . . . . . 6  |-  ( ph  ->  ( F `  0
)  e.  NN0 )
61, 5eqeltrd 2247 . . . . 5  |-  ( ph  ->  N  e.  NN0 )
76nn0red 9189 . . . . . 6  |-  ( ph  ->  N  e.  RR )
87leidd 8433 . . . . 5  |-  ( ph  ->  N  <_  N )
9 fveq2 5496 . . . . . . . 8  |-  ( m  =  0  ->  ( F `  m )  =  ( F ` 
0 ) )
10 oveq2 5861 . . . . . . . 8  |-  ( m  =  0  ->  ( N  -  m )  =  ( N  - 
0 ) )
119, 10breq12d 4002 . . . . . . 7  |-  ( m  =  0  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  0 )  <_ 
( N  -  0 ) ) )
1211imbi2d 229 . . . . . 6  |-  ( m  =  0  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  0
)  <_  ( N  -  0 ) ) ) )
13 fveq2 5496 . . . . . . . 8  |-  ( m  =  k  ->  ( F `  m )  =  ( F `  k ) )
14 oveq2 5861 . . . . . . . 8  |-  ( m  =  k  ->  ( N  -  m )  =  ( N  -  k ) )
1513, 14breq12d 4002 . . . . . . 7  |-  ( m  =  k  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  k )  <_  ( N  -  k )
) )
1615imbi2d 229 . . . . . 6  |-  ( m  =  k  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  k
)  <_  ( N  -  k ) ) ) )
17 fveq2 5496 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  ( F `  m )  =  ( F `  ( k  +  1 ) ) )
18 oveq2 5861 . . . . . . . 8  |-  ( m  =  ( k  +  1 )  ->  ( N  -  m )  =  ( N  -  ( k  +  1 ) ) )
1917, 18breq12d 4002 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
2019imbi2d 229 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) ) )
21 fveq2 5496 . . . . . . . 8  |-  ( m  =  N  ->  ( F `  m )  =  ( F `  N ) )
22 oveq2 5861 . . . . . . . 8  |-  ( m  =  N  ->  ( N  -  m )  =  ( N  -  N ) )
2321, 22breq12d 4002 . . . . . . 7  |-  ( m  =  N  ->  (
( F `  m
)  <_  ( N  -  m )  <->  ( F `  N )  <_  ( N  -  N )
) )
2423imbi2d 229 . . . . . 6  |-  ( m  =  N  ->  (
( ph  ->  ( F `
 m )  <_ 
( N  -  m
) )  <->  ( ph  ->  ( F `  N
)  <_  ( N  -  N ) ) ) )
251, 8eqbrtrrd 4013 . . . . . . . 8  |-  ( ph  ->  ( F `  0
)  <_  N )
267recnd 7948 . . . . . . . . 9  |-  ( ph  ->  N  e.  CC )
2726subid1d 8219 . . . . . . . 8  |-  ( ph  ->  ( N  -  0 )  =  N )
2825, 27breqtrrd 4017 . . . . . . 7  |-  ( ph  ->  ( F `  0
)  <_  ( N  -  0 ) )
2928a1i 9 . . . . . 6  |-  ( N  e.  NN0  ->  ( ph  ->  ( F `  0
)  <_  ( N  -  0 ) ) )
30 nn0re 9144 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  RR )
31 posdif 8374 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  RR  /\  N  e.  RR )  ->  ( k  <  N  <->  0  <  ( N  -  k ) ) )
3230, 7, 31syl2anr 288 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( k  <  N  <->  0  <  ( N  -  k )
) )
3332adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( k  <  N  <->  0  <  ( N  -  k ) ) )
34 breq1 3992 . . . . . . . . . . . . . . . 16  |-  ( ( F `  ( k  +  1 ) )  =  0  ->  (
( F `  (
k  +  1 ) )  <  ( N  -  k )  <->  0  <  ( N  -  k ) ) )
3534adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  0  <  ( N  -  k ) ) )
36 peano2nn0 9175 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
37 ffvelrn 5629 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : NN0 --> NN0  /\  ( k  +  1 )  e.  NN0 )  ->  ( F `  (
k  +  1 ) )  e.  NN0 )
382, 36, 37syl2an 287 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( k  +  1 ) )  e.  NN0 )
3938nn0zd 9332 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( k  +  1 ) )  e.  ZZ )
406nn0zd 9332 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  N  e.  ZZ )
41 nn0z 9232 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  ZZ )
42 zsubcl 9253 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  ZZ  /\  k  e.  ZZ )  ->  ( N  -  k
)  e.  ZZ )
4340, 41, 42syl2an 287 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( N  -  k )  e.  ZZ )
44 zltlem1 9269 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  (
k  +  1 ) )  e.  ZZ  /\  ( N  -  k
)  e.  ZZ )  ->  ( ( F `
 ( k  +  1 ) )  < 
( N  -  k
)  <->  ( F `  ( k  +  1 ) )  <_  (
( N  -  k
)  -  1 ) ) )
4539, 43, 44syl2anc 409 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  ( F `  ( k  +  1 ) )  <_  (
( N  -  k
)  -  1 ) ) )
46 nn0cn 9145 . . . . . . . . . . . . . . . . . . 19  |-  ( k  e.  NN0  ->  k  e.  CC )
47 ax-1cn 7867 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  CC
48 subsub4 8152 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( N  -  k
)  -  1 )  =  ( N  -  ( k  +  1 ) ) )
4947, 48mp3an3 1321 . . . . . . . . . . . . . . . . . . 19  |-  ( ( N  e.  CC  /\  k  e.  CC )  ->  ( ( N  -  k )  -  1 )  =  ( N  -  ( k  +  1 ) ) )
5026, 46, 49syl2an 287 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( N  -  k )  -  1 )  =  ( N  -  (
k  +  1 ) ) )
5150breq2d 4001 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  <_  ( ( N  -  k )  - 
1 )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5245, 51bitrd 187 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5352adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( ( F `  ( k  +  1 ) )  <  ( N  -  k )  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5433, 35, 533bitr2d 215 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( k  <  N  <->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
5554biimpa 294 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  ( F `  ( k  +  1 ) )  =  0 )  /\  k  <  N )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) )
5655an32s 563 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) )
5756a1d 22 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  /\  ( F `  ( k  +  1 ) )  =  0 )  -> 
( ( F `  k )  <_  ( N  -  k )  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
58 nn0seqcvgd.3 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( ( F `  ( k  +  1 ) )  =/=  0  ->  ( F `  ( k  +  1 ) )  <  ( F `  k ) ) )
5938nn0red 9189 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  ( k  +  1 ) )  e.  RR )
602ffvelrnda 5631 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  NN0 )
6160nn0red 9189 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( F `  k )  e.  RR )
6243zred 9334 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( N  -  k )  e.  RR )
63 ltletr 8009 . . . . . . . . . . . . . . . 16  |-  ( ( ( F `  (
k  +  1 ) )  e.  RR  /\  ( F `  k )  e.  RR  /\  ( N  -  k )  e.  RR )  ->  (
( ( F `  ( k  +  1 ) )  <  ( F `  k )  /\  ( F `  k
)  <_  ( N  -  k ) )  ->  ( F `  ( k  +  1 ) )  <  ( N  -  k )
) )
6459, 61, 62, 63syl3anc 1233 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( F `  (
k  +  1 ) )  <  ( F `
 k )  /\  ( F `  k )  <_  ( N  -  k ) )  -> 
( F `  (
k  +  1 ) )  <  ( N  -  k ) ) )
6564, 52sylibd 148 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( F `  (
k  +  1 ) )  <  ( F `
 k )  /\  ( F `  k )  <_  ( N  -  k ) )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6658, 65syland 291 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( (
( F `  (
k  +  1 ) )  =/=  0  /\  ( F `  k
)  <_  ( N  -  k ) )  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6766adantr 274 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  (
( ( F `  ( k  +  1 ) )  =/=  0  /\  ( F `  k
)  <_  ( N  -  k ) )  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6867expdimp 257 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  /\  ( F `  ( k  +  1 ) )  =/=  0 )  -> 
( ( F `  k )  <_  ( N  -  k )  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
6939adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  ( F `  ( k  +  1 ) )  e.  ZZ )
70 0zd 9224 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  0  e.  ZZ )
71 zdceq 9287 . . . . . . . . . . . . 13  |-  ( ( ( F `  (
k  +  1 ) )  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( F `  ( k  +  1 ) )  =  0 )
7269, 70, 71syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  -> DECID  ( F `  (
k  +  1 ) )  =  0 )
73 dcne 2351 . . . . . . . . . . . 12  |-  (DECID  ( F `
 ( k  +  1 ) )  =  0  <->  ( ( F `
 ( k  +  1 ) )  =  0  \/  ( F `
 ( k  +  1 ) )  =/=  0 ) )
7472, 73sylib 121 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  (
( F `  (
k  +  1 ) )  =  0  \/  ( F `  (
k  +  1 ) )  =/=  0 ) )
7557, 68, 74mpjaodan 793 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN0 )  /\  k  <  N )  ->  (
( F `  k
)  <_  ( N  -  k )  -> 
( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
7675anasss 397 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  NN0  /\  k  < 
N ) )  -> 
( ( F `  k )  <_  ( N  -  k )  ->  ( F `  (
k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) )
7776expcom 115 . . . . . . . 8  |-  ( ( k  e.  NN0  /\  k  <  N )  -> 
( ph  ->  ( ( F `  k )  <_  ( N  -  k )  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) ) )
7877a2d 26 . . . . . . 7  |-  ( ( k  e.  NN0  /\  k  <  N )  -> 
( ( ph  ->  ( F `  k )  <_  ( N  -  k ) )  -> 
( ph  ->  ( F `
 ( k  +  1 ) )  <_ 
( N  -  (
k  +  1 ) ) ) ) )
79783adant1 1010 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  NN0  /\  k  <  N )  ->  (
( ph  ->  ( F `
 k )  <_ 
( N  -  k
) )  ->  ( ph  ->  ( F `  ( k  +  1 ) )  <_  ( N  -  ( k  +  1 ) ) ) ) )
8012, 16, 20, 24, 29, 79fnn0ind 9328 . . . . 5  |-  ( ( N  e.  NN0  /\  N  e.  NN0  /\  N  <_  N )  ->  ( ph  ->  ( F `  N )  <_  ( N  -  N )
) )
816, 6, 8, 80syl3anc 1233 . . . 4  |-  ( ph  ->  ( ph  ->  ( F `  N )  <_  ( N  -  N
) ) )
8281pm2.43i 49 . . 3  |-  ( ph  ->  ( F `  N
)  <_  ( N  -  N ) )
8326subidd 8218 . . 3  |-  ( ph  ->  ( N  -  N
)  =  0 )
8482, 83breqtrd 4015 . 2  |-  ( ph  ->  ( F `  N
)  <_  0 )
852, 6ffvelrnd 5632 . . 3  |-  ( ph  ->  ( F `  N
)  e.  NN0 )
8685nn0ge0d 9191 . 2  |-  ( ph  ->  0  <_  ( F `  N ) )
8785nn0red 9189 . . 3  |-  ( ph  ->  ( F `  N
)  e.  RR )
88 0re 7920 . . 3  |-  0  e.  RR
89 letri3 8000 . . 3  |-  ( ( ( F `  N
)  e.  RR  /\  0  e.  RR )  ->  ( ( F `  N )  =  0  <-> 
( ( F `  N )  <_  0  /\  0  <_  ( F `
 N ) ) ) )
9087, 88, 89sylancl 411 . 2  |-  ( ph  ->  ( ( F `  N )  =  0  <-> 
( ( F `  N )  <_  0  /\  0  <_  ( F `
 N ) ) ) )
9184, 86, 90mpbir2and 939 1  |-  ( ph  ->  ( F `  N
)  =  0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955    - cmin 8090   NN0cn0 9135   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  algcvg  12002
  Copyright terms: Public domain W3C validator