ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemeu Unicode version

Theorem bezoutlemeu 12144
Description: Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
Assertion
Ref Expression
bezoutlemeu  |-  ( ph  ->  E! d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
Distinct variable groups:    z, D    A, d, z    B, d, z    ph, d
Allowed substitution hints:    ph( z)    D( d)

Proof of Theorem bezoutlemeu
Dummy variables  e  w  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.1 . . 3  |-  ( ph  ->  A  e.  ZZ )
2 bezoutlemgcd.2 . . 3  |-  ( ph  ->  B  e.  ZZ )
3 bezoutlembi 12142 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
4 simpl 109 . . . . 5  |-  ( ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )  ->  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) )
54reximi 2591 . . . 4  |-  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )  ->  E. d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) )
63, 5syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
71, 2, 6syl2anc 411 . 2  |-  ( ph  ->  E. d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
81ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A  e.  ZZ )
92ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  B  e.  ZZ )
10 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  -> 
d  e.  NN0 )
11 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
12 breq1 4032 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  d  <->  w  ||  d
) )
13 breq1 4032 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
14 breq1 4032 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
1513, 14anbi12d 473 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
1612, 15bibi12d 235 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  d  <->  ( w  ||  A  /\  w  ||  B ) ) ) )
1716cbvralv 2726 . . . . . . 7  |-  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  A  /\  w  ||  B ) ) )
1811, 17sylib 122 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. w  e.  ZZ  ( w  ||  d  <->  ( w  ||  A  /\  w  ||  B ) ) )
19 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  -> 
e  e.  NN0 )
20 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. z  e.  ZZ  ( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) ) )
21 breq1 4032 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  e  <->  w  ||  e
) )
2221, 15bibi12d 235 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  e  <->  ( w  ||  A  /\  w  ||  B ) ) ) )
2322cbvralv 2726 . . . . . . 7  |-  ( A. z  e.  ZZ  (
z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  ZZ  ( w  ||  e 
<->  ( w  ||  A  /\  w  ||  B ) ) )
2420, 23sylib 122 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. w  e.  ZZ  ( w  ||  e  <->  ( w  ||  A  /\  w  ||  B ) ) )
258, 9, 10, 18, 19, 24bezoutlemmo 12143 . . . . 5  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  -> 
d  =  e )
2625ex 115 . . . 4  |-  ( (
ph  /\  ( d  e.  NN0  /\  e  e. 
NN0 ) )  -> 
( ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  d  =  e ) )
2726ralrimivva 2576 . . 3  |-  ( ph  ->  A. d  e.  NN0  A. e  e.  NN0  (
( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  d  =  e ) )
28 breq2 4033 . . . . . 6  |-  ( d  =  e  ->  (
z  ||  d  <->  z  ||  e ) )
2928bibi1d 233 . . . . 5  |-  ( d  =  e  ->  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
3029ralbidv 2494 . . . 4  |-  ( d  =  e  ->  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. z  e.  ZZ  ( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
3130rmo4 2953 . . 3  |-  ( E* d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  <->  A. d  e.  NN0  A. e  e.  NN0  (
( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  d  =  e ) )
3227, 31sylibr 134 . 2  |-  ( ph  ->  E* d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
33 reu5 2711 . 2  |-  ( E! d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  <->  ( E. d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E* d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
347, 32, 33sylanbrc 417 1  |-  ( ph  ->  E! d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   E!wreu 2474   E*wrmo 2475   class class class wbr 4029  (class class class)co 5918    + caddc 7875    x. cmul 7877   NN0cn0 9240   ZZcz 9317    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931
This theorem is referenced by:  dfgcd3  12147  bezout  12148
  Copyright terms: Public domain W3C validator