ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemeu Unicode version

Theorem bezoutlemeu 12528
Description: Lemma for Bézout's identity. There is exactly one nonnegative integer meeting the greatest common divisor condition. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1  |-  ( ph  ->  A  e.  ZZ )
bezoutlemgcd.2  |-  ( ph  ->  B  e.  ZZ )
bezoutlemgcd.3  |-  ( ph  ->  D  e.  NN0 )
bezoutlemgcd.4  |-  ( ph  ->  A. z  e.  ZZ  ( z  ||  D  <->  ( z  ||  A  /\  z  ||  B ) ) )
Assertion
Ref Expression
bezoutlemeu  |-  ( ph  ->  E! d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
Distinct variable groups:    z, D    A, d, z    B, d, z    ph, d
Allowed substitution hints:    ph( z)    D( d)

Proof of Theorem bezoutlemeu
Dummy variables  e  w  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bezoutlemgcd.1 . . 3  |-  ( ph  ->  A  e.  ZZ )
2 bezoutlemgcd.2 . . 3  |-  ( ph  ->  B  e.  ZZ )
3 bezoutlembi 12526 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
4 simpl 109 . . . . 5  |-  ( ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )  ->  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) )
54reximi 2627 . . . 4  |-  ( E. d  e.  NN0  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  /\  E. s  e.  ZZ  E. t  e.  ZZ  d  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) )  ->  E. d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) )
63, 5syl 14 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  E. d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
71, 2, 6syl2anc 411 . 2  |-  ( ph  ->  E. d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
81ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A  e.  ZZ )
92ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  B  e.  ZZ )
10 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  -> 
d  e.  NN0 )
11 simprl 529 . . . . . . 7  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
12 breq1 4086 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  d  <->  w  ||  d
) )
13 breq1 4086 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  A  <->  w  ||  A
) )
14 breq1 4086 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  B  <->  w  ||  B
) )
1513, 14anbi12d 473 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z  ||  A  /\  z  ||  B )  <-> 
( w  ||  A  /\  w  ||  B ) ) )
1612, 15bibi12d 235 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  d  <->  ( w  ||  A  /\  w  ||  B ) ) ) )
1716cbvralv 2765 . . . . . . 7  |-  ( A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  ZZ  ( w  ||  d 
<->  ( w  ||  A  /\  w  ||  B ) ) )
1811, 17sylib 122 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. w  e.  ZZ  ( w  ||  d  <->  ( w  ||  A  /\  w  ||  B ) ) )
19 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  -> 
e  e.  NN0 )
20 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. z  e.  ZZ  ( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) ) )
21 breq1 4086 . . . . . . . . 9  |-  ( z  =  w  ->  (
z  ||  e  <->  w  ||  e
) )
2221, 15bibi12d 235 . . . . . . . 8  |-  ( z  =  w  ->  (
( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( w  ||  e  <->  ( w  ||  A  /\  w  ||  B ) ) ) )
2322cbvralv 2765 . . . . . . 7  |-  ( A. z  e.  ZZ  (
z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. w  e.  ZZ  ( w  ||  e 
<->  ( w  ||  A  /\  w  ||  B ) ) )
2420, 23sylib 122 . . . . . 6  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  ->  A. w  e.  ZZ  ( w  ||  e  <->  ( w  ||  A  /\  w  ||  B ) ) )
258, 9, 10, 18, 19, 24bezoutlemmo 12527 . . . . 5  |-  ( ( ( ph  /\  (
d  e.  NN0  /\  e  e.  NN0 ) )  /\  ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )  -> 
d  =  e )
2625ex 115 . . . 4  |-  ( (
ph  /\  ( d  e.  NN0  /\  e  e. 
NN0 ) )  -> 
( ( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  d  =  e ) )
2726ralrimivva 2612 . . 3  |-  ( ph  ->  A. d  e.  NN0  A. e  e.  NN0  (
( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  d  =  e ) )
28 breq2 4087 . . . . . 6  |-  ( d  =  e  ->  (
z  ||  d  <->  z  ||  e ) )
2928bibi1d 233 . . . . 5  |-  ( d  =  e  ->  (
( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <-> 
( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
3029ralbidv 2530 . . . 4  |-  ( d  =  e  ->  ( A. z  e.  ZZ  ( z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) )  <->  A. z  e.  ZZ  ( z  ||  e  <->  ( z  ||  A  /\  z  ||  B ) ) ) )
3130rmo4 2996 . . 3  |-  ( E* d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  <->  A. d  e.  NN0  A. e  e.  NN0  (
( A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  A. z  e.  ZZ  ( z  ||  e 
<->  ( z  ||  A  /\  z  ||  B ) ) )  ->  d  =  e ) )
3227, 31sylibr 134 . 2  |-  ( ph  ->  E* d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
33 reu5 2749 . 2  |-  ( E! d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  <->  ( E. d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) )  /\  E* d  e.  NN0  A. z  e.  ZZ  ( z  ||  d 
<->  ( z  ||  A  /\  z  ||  B ) ) ) )
347, 32, 33sylanbrc 417 1  |-  ( ph  ->  E! d  e.  NN0  A. z  e.  ZZ  (
z  ||  d  <->  ( z  ||  A  /\  z  ||  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   E!wreu 2510   E*wrmo 2511   class class class wbr 4083  (class class class)co 6001    + caddc 8002    x. cmul 8004   NN0cn0 9369   ZZcz 9446    || cdvds 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299
This theorem is referenced by:  dfgcd3  12531  bezout  12532
  Copyright terms: Public domain W3C validator