ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enfii Unicode version

Theorem enfii 6864
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
enfii  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )

Proof of Theorem enfii
StepHypRef Expression
1 enfi 6863 . 2  |-  ( A 
~~  B  ->  ( A  e.  Fin  <->  B  e.  Fin ) )
21biimparc 299 1  |-  ( ( B  e.  Fin  /\  A  ~~  B )  ->  A  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2146   class class class wbr 3998    ~~ cen 6728   Fincfn 6730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-er 6525  df-en 6731  df-fin 6733
This theorem is referenced by:  dif1en  6869  diffisn  6883  xpfi  6919  fisseneq  6921  fundmfi  6927  relcnvfi  6930  f1ofi  6932  f1dmvrnfibi  6933  f1finf1o  6936  en1eqsn  6937  exmidonfinlem  7182  fzfig  10400  hashennnuni  10727  hashennn  10728  summodclem2  11358  zsumdc  11360  prodmodclem2  11553  zproddc  11555
  Copyright terms: Public domain W3C validator