Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > enfii | Unicode version |
Description: A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) |
Ref | Expression |
---|---|
enfii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enfi 6839 | . 2 | |
2 | 1 | biimparc 297 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 class class class wbr 3982 cen 6704 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: dif1en 6845 diffisn 6859 xpfi 6895 fisseneq 6897 fundmfi 6903 relcnvfi 6906 f1ofi 6908 f1dmvrnfibi 6909 f1finf1o 6912 en1eqsn 6913 exmidonfinlem 7149 fzfig 10365 hashennnuni 10692 hashennn 10693 summodclem2 11323 zsumdc 11325 prodmodclem2 11518 zproddc 11520 |
Copyright terms: Public domain | W3C validator |