ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirn Unicode version

Theorem elunirn 5780
Description: Membership in the union of the range of a function. (Contributed by NM, 24-Sep-2006.)
Assertion
Ref Expression
elunirn  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem elunirn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 3824 . 2  |-  ( A  e.  U. ran  F  <->  E. y ( A  e.  y  /\  y  e. 
ran  F ) )
2 funfn 5258 . . . . . . . 8  |-  ( Fun 
F  <->  F  Fn  dom  F )
3 fvelrnb 5576 . . . . . . . 8  |-  ( F  Fn  dom  F  -> 
( y  e.  ran  F  <->  E. x  e.  dom  F ( F `  x
)  =  y ) )
42, 3sylbi 121 . . . . . . 7  |-  ( Fun 
F  ->  ( y  e.  ran  F  <->  E. x  e.  dom  F ( F `
 x )  =  y ) )
54anbi2d 464 . . . . . 6  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  <-> 
( A  e.  y  /\  E. x  e. 
dom  F ( F `
 x )  =  y ) ) )
6 r19.42v 2644 . . . . . 6  |-  ( E. x  e.  dom  F
( A  e.  y  /\  ( F `  x )  =  y )  <->  ( A  e.  y  /\  E. x  e.  dom  F ( F `
 x )  =  y ) )
75, 6bitr4di 198 . . . . 5  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  <->  E. x  e.  dom  F ( A  e.  y  /\  ( F `  x )  =  y ) ) )
8 eleq2 2251 . . . . . . 7  |-  ( ( F `  x )  =  y  ->  ( A  e.  ( F `  x )  <->  A  e.  y ) )
98biimparc 299 . . . . . 6  |-  ( ( A  e.  y  /\  ( F `  x )  =  y )  ->  A  e.  ( F `  x ) )
109reximi 2584 . . . . 5  |-  ( E. x  e.  dom  F
( A  e.  y  /\  ( F `  x )  =  y )  ->  E. x  e.  dom  F  A  e.  ( F `  x
) )
117, 10biimtrdi 163 . . . 4  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  ->  E. x  e.  dom  F  A  e.  ( F `
 x ) ) )
1211exlimdv 1829 . . 3  |-  ( Fun 
F  ->  ( E. y ( A  e.  y  /\  y  e. 
ran  F )  ->  E. x  e.  dom  F  A  e.  ( F `
 x ) ) )
13 fvelrn 5660 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
14 funfvex 5544 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
15 eleq2 2251 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  ( A  e.  y  <->  A  e.  ( F `  x ) ) )
16 eleq1 2250 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
y  e.  ran  F  <->  ( F `  x )  e.  ran  F ) )
1715, 16anbi12d 473 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
( A  e.  y  /\  y  e.  ran  F )  <->  ( A  e.  ( F `  x
)  /\  ( F `  x )  e.  ran  F ) ) )
1817spcegv 2837 . . . . . 6  |-  ( ( F `  x )  e.  _V  ->  (
( A  e.  ( F `  x )  /\  ( F `  x )  e.  ran  F )  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
1914, 18syl 14 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( A  e.  ( F `  x
)  /\  ( F `  x )  e.  ran  F )  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
2013, 19mpan2d 428 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( A  e.  ( F `  x )  ->  E. y ( A  e.  y  /\  y  e.  ran  F ) ) )
2120rexlimdva 2604 . . 3  |-  ( Fun 
F  ->  ( E. x  e.  dom  F  A  e.  ( F `  x
)  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
2212, 21impbid 129 . 2  |-  ( Fun 
F  ->  ( E. y ( A  e.  y  /\  y  e. 
ran  F )  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
231, 22bitrid 192 1  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363   E.wex 1502    e. wcel 2158   E.wrex 2466   _Vcvv 2749   U.cuni 3821   dom cdm 4638   ran crn 4639   Fun wfun 5222    Fn wfn 5223   ` cfv 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236
This theorem is referenced by:  fnunirn  5781
  Copyright terms: Public domain W3C validator