ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirn Unicode version

Theorem elunirn 5745
Description: Membership in the union of the range of a function. (Contributed by NM, 24-Sep-2006.)
Assertion
Ref Expression
elunirn  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem elunirn
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 3799 . 2  |-  ( A  e.  U. ran  F  <->  E. y ( A  e.  y  /\  y  e. 
ran  F ) )
2 funfn 5228 . . . . . . . 8  |-  ( Fun 
F  <->  F  Fn  dom  F )
3 fvelrnb 5544 . . . . . . . 8  |-  ( F  Fn  dom  F  -> 
( y  e.  ran  F  <->  E. x  e.  dom  F ( F `  x
)  =  y ) )
42, 3sylbi 120 . . . . . . 7  |-  ( Fun 
F  ->  ( y  e.  ran  F  <->  E. x  e.  dom  F ( F `
 x )  =  y ) )
54anbi2d 461 . . . . . 6  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  <-> 
( A  e.  y  /\  E. x  e. 
dom  F ( F `
 x )  =  y ) ) )
6 r19.42v 2627 . . . . . 6  |-  ( E. x  e.  dom  F
( A  e.  y  /\  ( F `  x )  =  y )  <->  ( A  e.  y  /\  E. x  e.  dom  F ( F `
 x )  =  y ) )
75, 6bitr4di 197 . . . . 5  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  <->  E. x  e.  dom  F ( A  e.  y  /\  ( F `  x )  =  y ) ) )
8 eleq2 2234 . . . . . . 7  |-  ( ( F `  x )  =  y  ->  ( A  e.  ( F `  x )  <->  A  e.  y ) )
98biimparc 297 . . . . . 6  |-  ( ( A  e.  y  /\  ( F `  x )  =  y )  ->  A  e.  ( F `  x ) )
109reximi 2567 . . . . 5  |-  ( E. x  e.  dom  F
( A  e.  y  /\  ( F `  x )  =  y )  ->  E. x  e.  dom  F  A  e.  ( F `  x
) )
117, 10syl6bi 162 . . . 4  |-  ( Fun 
F  ->  ( ( A  e.  y  /\  y  e.  ran  F )  ->  E. x  e.  dom  F  A  e.  ( F `
 x ) ) )
1211exlimdv 1812 . . 3  |-  ( Fun 
F  ->  ( E. y ( A  e.  y  /\  y  e. 
ran  F )  ->  E. x  e.  dom  F  A  e.  ( F `
 x ) ) )
13 fvelrn 5627 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
14 funfvex 5513 . . . . . 6  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
15 eleq2 2234 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  ( A  e.  y  <->  A  e.  ( F `  x ) ) )
16 eleq1 2233 . . . . . . . 8  |-  ( y  =  ( F `  x )  ->  (
y  e.  ran  F  <->  ( F `  x )  e.  ran  F ) )
1715, 16anbi12d 470 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
( A  e.  y  /\  y  e.  ran  F )  <->  ( A  e.  ( F `  x
)  /\  ( F `  x )  e.  ran  F ) ) )
1817spcegv 2818 . . . . . 6  |-  ( ( F `  x )  e.  _V  ->  (
( A  e.  ( F `  x )  /\  ( F `  x )  e.  ran  F )  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
1914, 18syl 14 . . . . 5  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( ( A  e.  ( F `  x
)  /\  ( F `  x )  e.  ran  F )  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
2013, 19mpan2d 426 . . . 4  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( A  e.  ( F `  x )  ->  E. y ( A  e.  y  /\  y  e.  ran  F ) ) )
2120rexlimdva 2587 . . 3  |-  ( Fun 
F  ->  ( E. x  e.  dom  F  A  e.  ( F `  x
)  ->  E. y
( A  e.  y  /\  y  e.  ran  F ) ) )
2212, 21impbid 128 . 2  |-  ( Fun 
F  ->  ( E. y ( A  e.  y  /\  y  e. 
ran  F )  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
231, 22syl5bb 191 1  |-  ( Fun 
F  ->  ( A  e.  U. ran  F  <->  E. x  e.  dom  F  A  e.  ( F `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   E.wrex 2449   _Vcvv 2730   U.cuni 3796   dom cdm 4611   ran crn 4612   Fun wfun 5192    Fn wfn 5193   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206
This theorem is referenced by:  fnunirn  5746
  Copyright terms: Public domain W3C validator