Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elunirn | Unicode version |
Description: Membership in the union of the range of a function. (Contributed by NM, 24-Sep-2006.) |
Ref | Expression |
---|---|
elunirn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3799 | . 2 | |
2 | funfn 5228 | . . . . . . . 8 | |
3 | fvelrnb 5544 | . . . . . . . 8 | |
4 | 2, 3 | sylbi 120 | . . . . . . 7 |
5 | 4 | anbi2d 461 | . . . . . 6 |
6 | r19.42v 2627 | . . . . . 6 | |
7 | 5, 6 | bitr4di 197 | . . . . 5 |
8 | eleq2 2234 | . . . . . . 7 | |
9 | 8 | biimparc 297 | . . . . . 6 |
10 | 9 | reximi 2567 | . . . . 5 |
11 | 7, 10 | syl6bi 162 | . . . 4 |
12 | 11 | exlimdv 1812 | . . 3 |
13 | fvelrn 5627 | . . . . 5 | |
14 | funfvex 5513 | . . . . . 6 | |
15 | eleq2 2234 | . . . . . . . 8 | |
16 | eleq1 2233 | . . . . . . . 8 | |
17 | 15, 16 | anbi12d 470 | . . . . . . 7 |
18 | 17 | spcegv 2818 | . . . . . 6 |
19 | 14, 18 | syl 14 | . . . . 5 |
20 | 13, 19 | mpan2d 426 | . . . 4 |
21 | 20 | rexlimdva 2587 | . . 3 |
22 | 12, 21 | impbid 128 | . 2 |
23 | 1, 22 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 wrex 2449 cvv 2730 cuni 3796 cdm 4611 crn 4612 wfun 5192 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 |
This theorem is referenced by: fnunirn 5746 |
Copyright terms: Public domain | W3C validator |