Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elunirn | Unicode version |
Description: Membership in the union of the range of a function. (Contributed by NM, 24-Sep-2006.) |
Ref | Expression |
---|---|
elunirn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3792 | . 2 | |
2 | funfn 5218 | . . . . . . . 8 | |
3 | fvelrnb 5534 | . . . . . . . 8 | |
4 | 2, 3 | sylbi 120 | . . . . . . 7 |
5 | 4 | anbi2d 460 | . . . . . 6 |
6 | r19.42v 2623 | . . . . . 6 | |
7 | 5, 6 | bitr4di 197 | . . . . 5 |
8 | eleq2 2230 | . . . . . . 7 | |
9 | 8 | biimparc 297 | . . . . . 6 |
10 | 9 | reximi 2563 | . . . . 5 |
11 | 7, 10 | syl6bi 162 | . . . 4 |
12 | 11 | exlimdv 1807 | . . 3 |
13 | fvelrn 5616 | . . . . 5 | |
14 | funfvex 5503 | . . . . . 6 | |
15 | eleq2 2230 | . . . . . . . 8 | |
16 | eleq1 2229 | . . . . . . . 8 | |
17 | 15, 16 | anbi12d 465 | . . . . . . 7 |
18 | 17 | spcegv 2814 | . . . . . 6 |
19 | 14, 18 | syl 14 | . . . . 5 |
20 | 13, 19 | mpan2d 425 | . . . 4 |
21 | 20 | rexlimdva 2583 | . . 3 |
22 | 12, 21 | impbid 128 | . 2 |
23 | 1, 22 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 wrex 2445 cvv 2726 cuni 3789 cdm 4604 crn 4605 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: fnunirn 5735 |
Copyright terms: Public domain | W3C validator |