Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elunirn | Unicode version |
Description: Membership in the union of the range of a function. (Contributed by NM, 24-Sep-2006.) |
Ref | Expression |
---|---|
elunirn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3775 | . 2 | |
2 | funfn 5199 | . . . . . . . 8 | |
3 | fvelrnb 5515 | . . . . . . . 8 | |
4 | 2, 3 | sylbi 120 | . . . . . . 7 |
5 | 4 | anbi2d 460 | . . . . . 6 |
6 | r19.42v 2614 | . . . . . 6 | |
7 | 5, 6 | bitr4di 197 | . . . . 5 |
8 | eleq2 2221 | . . . . . . 7 | |
9 | 8 | biimparc 297 | . . . . . 6 |
10 | 9 | reximi 2554 | . . . . 5 |
11 | 7, 10 | syl6bi 162 | . . . 4 |
12 | 11 | exlimdv 1799 | . . 3 |
13 | fvelrn 5597 | . . . . 5 | |
14 | funfvex 5484 | . . . . . 6 | |
15 | eleq2 2221 | . . . . . . . 8 | |
16 | eleq1 2220 | . . . . . . . 8 | |
17 | 15, 16 | anbi12d 465 | . . . . . . 7 |
18 | 17 | spcegv 2800 | . . . . . 6 |
19 | 14, 18 | syl 14 | . . . . 5 |
20 | 13, 19 | mpan2d 425 | . . . 4 |
21 | 20 | rexlimdva 2574 | . . 3 |
22 | 12, 21 | impbid 128 | . 2 |
23 | 1, 22 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 wrex 2436 cvv 2712 cuni 3772 cdm 4585 crn 4586 wfun 5163 wfn 5164 cfv 5169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-iota 5134 df-fun 5171 df-fn 5172 df-fv 5177 |
This theorem is referenced by: fnunirn 5714 |
Copyright terms: Public domain | W3C validator |