ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bastop2 Unicode version

Theorem bastop2 14752
Description: A version of bastop1 14751 that doesn't have  B  C_  J in the antecedent. (Contributed by NM, 3-Feb-2008.)
Assertion
Ref Expression
bastop2  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  <->  ( B  C_  J  /\  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y
) ) ) )
Distinct variable groups:    x, y, B   
x, J, y

Proof of Theorem bastop2
StepHypRef Expression
1 eleq1 2292 . . . . . . . 8  |-  ( (
topGen `  B )  =  J  ->  ( ( topGen `
 B )  e. 
Top 
<->  J  e.  Top )
)
21biimparc 299 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  ( topGen `
 B )  e. 
Top )
3 tgclb 14733 . . . . . . 7  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
42, 3sylibr 134 . . . . . 6  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  B  e. 
TopBases )
5 bastg 14729 . . . . . 6  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
64, 5syl 14 . . . . 5  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  B  C_  ( topGen `  B )
)
7 simpr 110 . . . . 5  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  ( topGen `
 B )  =  J )
86, 7sseqtrd 3262 . . . 4  |-  ( ( J  e.  Top  /\  ( topGen `  B )  =  J )  ->  B  C_  J )
98ex 115 . . 3  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  ->  B  C_  J ) )
109pm4.71rd 394 . 2  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  <->  ( B  C_  J  /\  ( topGen `  B
)  =  J ) ) )
11 bastop1 14751 . . 3  |-  ( ( J  e.  Top  /\  B  C_  J )  -> 
( ( topGen `  B
)  =  J  <->  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) )
1211pm5.32da 452 . 2  |-  ( J  e.  Top  ->  (
( B  C_  J  /\  ( topGen `  B )  =  J )  <->  ( B  C_  J  /\  A. x  e.  J  E. y
( y  C_  B  /\  x  =  U. y ) ) ) )
1310, 12bitrd 188 1  |-  ( J  e.  Top  ->  (
( topGen `  B )  =  J  <->  ( B  C_  J  /\  A. x  e.  J  E. y ( y  C_  B  /\  x  =  U. y
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508    C_ wss 3197   U.cuni 3887   ` cfv 5317   topGenctg 13282   Topctop 14665   TopBasesctb 14710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-topgen 13288  df-top 14666  df-bases 14711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator