| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omex | GIF version | ||
| Description: Proof of omex 4641 from ax-infvn 15877. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-infvn 15877 | . 2 ⊢ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) | |
| 2 | bj-2inf 15874 | . 2 ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) | |
| 3 | 1, 2 | mpbir 146 | 1 ⊢ ω ∈ V |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1515 ∈ wcel 2176 Vcvv 2772 ⊆ wss 3166 ωcom 4638 Ind wind 15862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-nul 4170 ax-pr 4253 ax-un 4480 ax-bd0 15749 ax-bdor 15752 ax-bdex 15755 ax-bdeq 15756 ax-bdel 15757 ax-bdsb 15758 ax-bdsep 15820 ax-infvn 15877 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 df-bdc 15777 df-bj-ind 15863 |
| This theorem is referenced by: bdpeano5 15879 speano5 15880 bdfind 15882 bj-omtrans 15892 bj-omelon 15897 |
| Copyright terms: Public domain | W3C validator |