Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omex | GIF version |
Description: Proof of omex 4577 from ax-infvn 13976. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-omex | ⊢ ω ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-infvn 13976 | . 2 ⊢ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) | |
2 | bj-2inf 13973 | . 2 ⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) | |
3 | 1, 2 | mpbir 145 | 1 ⊢ ω ∈ V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 ωcom 4574 Ind wind 13961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-bd0 13848 ax-bdor 13851 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-infvn 13976 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: bdpeano5 13978 speano5 13979 bdfind 13981 bj-omtrans 13991 bj-omelon 13996 |
Copyright terms: Public domain | W3C validator |