ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brco Unicode version

Theorem brco 4833
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1  |-  A  e. 
_V
opelco.2  |-  B  e. 
_V
Assertion
Ref Expression
brco  |-  ( A ( C  o.  D
) B  <->  E. x
( A D x  /\  x C B ) )
Distinct variable groups:    x, A    x, B    x, C    x, D

Proof of Theorem brco
StepHypRef Expression
1 opelco.1 . 2  |-  A  e. 
_V
2 opelco.2 . 2  |-  B  e. 
_V
3 brcog 4829 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
41, 2, 3mp2an 426 1  |-  ( A ( C  o.  D
) B  <->  E. x
( A D x  /\  x C B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2164   _Vcvv 2760   class class class wbr 4029    o. ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-co 4668
This theorem is referenced by:  opelco  4834  cnvco  4847  resco  5170  imaco  5171  rnco  5172  coass  5184  f1eqcocnv  5834
  Copyright terms: Public domain W3C validator