ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brco Unicode version

Theorem brco 4607
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1  |-  A  e. 
_V
opelco.2  |-  B  e. 
_V
Assertion
Ref Expression
brco  |-  ( A ( C  o.  D
) B  <->  E. x
( A D x  /\  x C B ) )
Distinct variable groups:    x, A    x, B    x, C    x, D

Proof of Theorem brco
StepHypRef Expression
1 opelco.1 . 2  |-  A  e. 
_V
2 opelco.2 . 2  |-  B  e. 
_V
3 brcog 4603 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A ( C  o.  D ) B  <->  E. x ( A D x  /\  x C B ) ) )
41, 2, 3mp2an 417 1  |-  ( A ( C  o.  D
) B  <->  E. x
( A D x  /\  x C B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   E.wex 1426    e. wcel 1438   _Vcvv 2619   class class class wbr 3845    o. ccom 4442
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-br 3846  df-opab 3900  df-co 4447
This theorem is referenced by:  opelco  4608  cnvco  4621  resco  4935  imaco  4936  rnco  4937  coass  4949  f1eqcocnv  5570
  Copyright terms: Public domain W3C validator