ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnco Unicode version

Theorem rnco 5172
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
rnco  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )

Proof of Theorem rnco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . . 6  |-  x  e. 
_V
2 vex 2763 . . . . . 6  |-  y  e. 
_V
31, 2brco 4833 . . . . 5  |-  ( x ( A  o.  B
) y  <->  E. z
( x B z  /\  z A y ) )
43exbii 1616 . . . 4  |-  ( E. x  x ( A  o.  B ) y  <->  E. x E. z ( x B z  /\  z A y ) )
5 excom 1675 . . . 4  |-  ( E. x E. z ( x B z  /\  z A y )  <->  E. z E. x ( x B z  /\  z A y ) )
6 ancom 266 . . . . . . 7  |-  ( ( E. x  x B z  /\  z A y )  <->  ( z A y  /\  E. x  x B z ) )
7 19.41v 1914 . . . . . . 7  |-  ( E. x ( x B z  /\  z A y )  <->  ( E. x  x B z  /\  z A y ) )
8 vex 2763 . . . . . . . . 9  |-  z  e. 
_V
98elrn 4905 . . . . . . . 8  |-  ( z  e.  ran  B  <->  E. x  x B z )
109anbi2i 457 . . . . . . 7  |-  ( ( z A y  /\  z  e.  ran  B )  <-> 
( z A y  /\  E. x  x B z ) )
116, 7, 103bitr4i 212 . . . . . 6  |-  ( E. x ( x B z  /\  z A y )  <->  ( z A y  /\  z  e.  ran  B ) )
122brres 4948 . . . . . 6  |-  ( z ( A  |`  ran  B
) y  <->  ( z A y  /\  z  e.  ran  B ) )
1311, 12bitr4i 187 . . . . 5  |-  ( E. x ( x B z  /\  z A y )  <->  z ( A  |`  ran  B ) y )
1413exbii 1616 . . . 4  |-  ( E. z E. x ( x B z  /\  z A y )  <->  E. z 
z ( A  |`  ran  B ) y )
154, 5, 143bitri 206 . . 3  |-  ( E. x  x ( A  o.  B ) y  <->  E. z  z ( A  |`  ran  B ) y )
162elrn 4905 . . 3  |-  ( y  e.  ran  ( A  o.  B )  <->  E. x  x ( A  o.  B ) y )
172elrn 4905 . . 3  |-  ( y  e.  ran  ( A  |`  ran  B )  <->  E. z 
z ( A  |`  ran  B ) y )
1815, 16, 173bitr4i 212 . 2  |-  ( y  e.  ran  ( A  o.  B )  <->  y  e.  ran  ( A  |`  ran  B
) )
1918eqriv 2190 1  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2164   class class class wbr 4029   ran crn 4660    |` cres 4661    o. ccom 4663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671
This theorem is referenced by:  rnco2  5173  cofunexg  6161  1stcof  6216  2ndcof  6217  djudom  7152
  Copyright terms: Public domain W3C validator