ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnco Unicode version

Theorem rnco 5091
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
rnco  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )

Proof of Theorem rnco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2715 . . . . . 6  |-  x  e. 
_V
2 vex 2715 . . . . . 6  |-  y  e. 
_V
31, 2brco 4756 . . . . 5  |-  ( x ( A  o.  B
) y  <->  E. z
( x B z  /\  z A y ) )
43exbii 1585 . . . 4  |-  ( E. x  x ( A  o.  B ) y  <->  E. x E. z ( x B z  /\  z A y ) )
5 excom 1644 . . . 4  |-  ( E. x E. z ( x B z  /\  z A y )  <->  E. z E. x ( x B z  /\  z A y ) )
6 ancom 264 . . . . . . 7  |-  ( ( E. x  x B z  /\  z A y )  <->  ( z A y  /\  E. x  x B z ) )
7 19.41v 1882 . . . . . . 7  |-  ( E. x ( x B z  /\  z A y )  <->  ( E. x  x B z  /\  z A y ) )
8 vex 2715 . . . . . . . . 9  |-  z  e. 
_V
98elrn 4828 . . . . . . . 8  |-  ( z  e.  ran  B  <->  E. x  x B z )
109anbi2i 453 . . . . . . 7  |-  ( ( z A y  /\  z  e.  ran  B )  <-> 
( z A y  /\  E. x  x B z ) )
116, 7, 103bitr4i 211 . . . . . 6  |-  ( E. x ( x B z  /\  z A y )  <->  ( z A y  /\  z  e.  ran  B ) )
122brres 4871 . . . . . 6  |-  ( z ( A  |`  ran  B
) y  <->  ( z A y  /\  z  e.  ran  B ) )
1311, 12bitr4i 186 . . . . 5  |-  ( E. x ( x B z  /\  z A y )  <->  z ( A  |`  ran  B ) y )
1413exbii 1585 . . . 4  |-  ( E. z E. x ( x B z  /\  z A y )  <->  E. z 
z ( A  |`  ran  B ) y )
154, 5, 143bitri 205 . . 3  |-  ( E. x  x ( A  o.  B ) y  <->  E. z  z ( A  |`  ran  B ) y )
162elrn 4828 . . 3  |-  ( y  e.  ran  ( A  o.  B )  <->  E. x  x ( A  o.  B ) y )
172elrn 4828 . . 3  |-  ( y  e.  ran  ( A  |`  ran  B )  <->  E. z 
z ( A  |`  ran  B ) y )
1815, 16, 173bitr4i 211 . 2  |-  ( y  e.  ran  ( A  o.  B )  <->  y  e.  ran  ( A  |`  ran  B
) )
1918eqriv 2154 1  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1335   E.wex 1472    e. wcel 2128   class class class wbr 3965   ran crn 4586    |` cres 4587    o. ccom 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-xp 4591  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597
This theorem is referenced by:  rnco2  5092  cofunexg  6056  1stcof  6108  2ndcof  6109  djudom  7031
  Copyright terms: Public domain W3C validator