ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnco Unicode version

Theorem rnco 5127
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
rnco  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )

Proof of Theorem rnco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2738 . . . . . 6  |-  x  e. 
_V
2 vex 2738 . . . . . 6  |-  y  e. 
_V
31, 2brco 4791 . . . . 5  |-  ( x ( A  o.  B
) y  <->  E. z
( x B z  /\  z A y ) )
43exbii 1603 . . . 4  |-  ( E. x  x ( A  o.  B ) y  <->  E. x E. z ( x B z  /\  z A y ) )
5 excom 1662 . . . 4  |-  ( E. x E. z ( x B z  /\  z A y )  <->  E. z E. x ( x B z  /\  z A y ) )
6 ancom 266 . . . . . . 7  |-  ( ( E. x  x B z  /\  z A y )  <->  ( z A y  /\  E. x  x B z ) )
7 19.41v 1900 . . . . . . 7  |-  ( E. x ( x B z  /\  z A y )  <->  ( E. x  x B z  /\  z A y ) )
8 vex 2738 . . . . . . . . 9  |-  z  e. 
_V
98elrn 4863 . . . . . . . 8  |-  ( z  e.  ran  B  <->  E. x  x B z )
109anbi2i 457 . . . . . . 7  |-  ( ( z A y  /\  z  e.  ran  B )  <-> 
( z A y  /\  E. x  x B z ) )
116, 7, 103bitr4i 212 . . . . . 6  |-  ( E. x ( x B z  /\  z A y )  <->  ( z A y  /\  z  e.  ran  B ) )
122brres 4906 . . . . . 6  |-  ( z ( A  |`  ran  B
) y  <->  ( z A y  /\  z  e.  ran  B ) )
1311, 12bitr4i 187 . . . . 5  |-  ( E. x ( x B z  /\  z A y )  <->  z ( A  |`  ran  B ) y )
1413exbii 1603 . . . 4  |-  ( E. z E. x ( x B z  /\  z A y )  <->  E. z 
z ( A  |`  ran  B ) y )
154, 5, 143bitri 206 . . 3  |-  ( E. x  x ( A  o.  B ) y  <->  E. z  z ( A  |`  ran  B ) y )
162elrn 4863 . . 3  |-  ( y  e.  ran  ( A  o.  B )  <->  E. x  x ( A  o.  B ) y )
172elrn 4863 . . 3  |-  ( y  e.  ran  ( A  |`  ran  B )  <->  E. z 
z ( A  |`  ran  B ) y )
1815, 16, 173bitr4i 212 . 2  |-  ( y  e.  ran  ( A  o.  B )  <->  y  e.  ran  ( A  |`  ran  B
) )
1918eqriv 2172 1  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1490    e. wcel 2146   class class class wbr 3998   ran crn 4621    |` cres 4622    o. ccom 4624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632
This theorem is referenced by:  rnco2  5128  cofunexg  6100  1stcof  6154  2ndcof  6155  djudom  7082
  Copyright terms: Public domain W3C validator