Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelco | Unicode version |
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco.1 | |
opelco.2 |
Ref | Expression |
---|---|
opelco |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3999 | . 2 | |
2 | opelco.1 | . . 3 | |
3 | opelco.2 | . . 3 | |
4 | 2, 3 | brco 4791 | . 2 |
5 | 1, 4 | bitr3i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wex 1490 wcel 2146 cvv 2735 cop 3592 class class class wbr 3998 ccom 4624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-co 4629 |
This theorem is referenced by: dmcoss 4889 dmcosseq 4891 cotr 5002 coiun 5130 co02 5134 coi1 5136 coass 5139 fmptco 5674 dftpos4 6254 |
Copyright terms: Public domain | W3C validator |