ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelco Unicode version

Theorem opelco 4649
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1  |-  A  e. 
_V
opelco.2  |-  B  e. 
_V
Assertion
Ref Expression
opelco  |-  ( <. A ,  B >.  e.  ( C  o.  D
)  <->  E. x ( A D x  /\  x C B ) )
Distinct variable groups:    x, A    x, B    x, C    x, D

Proof of Theorem opelco
StepHypRef Expression
1 df-br 3876 . 2  |-  ( A ( C  o.  D
) B  <->  <. A ,  B >.  e.  ( C  o.  D ) )
2 opelco.1 . . 3  |-  A  e. 
_V
3 opelco.2 . . 3  |-  B  e. 
_V
42, 3brco 4648 . 2  |-  ( A ( C  o.  D
) B  <->  E. x
( A D x  /\  x C B ) )
51, 4bitr3i 185 1  |-  ( <. A ,  B >.  e.  ( C  o.  D
)  <->  E. x ( A D x  /\  x C B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1436    e. wcel 1448   _Vcvv 2641   <.cop 3477   class class class wbr 3875    o. ccom 4481
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-br 3876  df-opab 3930  df-co 4486
This theorem is referenced by:  dmcoss  4744  dmcosseq  4746  cotr  4856  coiun  4984  co02  4988  coi1  4990  coass  4993  fmptco  5518  dftpos4  6090
  Copyright terms: Public domain W3C validator